您的位置: 专家智库 > >

国家自然科学基金(60773061)

作品数:9 被引量:133H指数:3
相关作者:陈松灿陈晓红顾晶晶庄毅汪云云更多>>
相关机构:南京航空航天大学南京师范大学更多>>
发文基金:国家自然科学基金江苏省自然科学基金国家高技术研究发展计划更多>>
相关领域:自动化与计算机技术理学更多>>

文献类型

  • 8篇中文期刊文章

领域

  • 8篇自动化与计算...

主题

  • 2篇分类器
  • 2篇PATTER...
  • 1篇多类分类
  • 1篇多类分类器
  • 1篇特征提取
  • 1篇曲线下面积
  • 1篇拓扑
  • 1篇拓扑结构
  • 1篇网络
  • 1篇网络拓扑
  • 1篇网络拓扑结构
  • 1篇无线传感
  • 1篇无线传感器
  • 1篇无线传感器网
  • 1篇无线传感器网...
  • 1篇物联网
  • 1篇线性判别分析
  • 1篇联网
  • 1篇流形
  • 1篇流形学习

机构

  • 6篇南京航空航天...
  • 1篇南京师范大学

作者

  • 3篇陈松灿
  • 2篇陈晓红
  • 1篇蔡维玲
  • 1篇庄毅
  • 1篇薛晖
  • 1篇丁军娣
  • 1篇汪云云
  • 1篇顾晶晶

传媒

  • 2篇Transa...
  • 2篇Tsingh...
  • 1篇模式识别与人...
  • 1篇计算机学报
  • 1篇小型微型计算...
  • 1篇计算机工程与...

年份

  • 1篇2011
  • 5篇2010
  • 1篇2009
  • 1篇2008
9 条 记 录,以下是 1-8
排序方式:
Semantic-Oriented Knowledge Transfer for Review Rating被引量:1
2010年
With the rapid development of Web 2.0, more and more people are sharing their opinions about online products, so there is much product review data. However, it is difficult to compare products directly using ratings because many ratings are based on different scales or ratings are even missing. This paper addresses the following question: given textual reviews, how can we automatically determine the semantic orientations of reviewers and then rank different items? Due to the absence of ratings in many reviews, it is difficult to collect sufficient rating data for certain specific categories of products (e.g., movies), but it is easier to find rating data in another different but related category (e.g., books). We refer to this problem as transfer rating, and try to train a better ranking model for items in the interested category with the help of rating data from another related category. Specifically, we developed a ranking-oriented method called TRate for determining the semantic orientations and for ranking different items and formulated it in a regularized algorithm for rating knowledge transfer by bridging the two related categories via a shared latent semantic space. Tests on the Epinion dataset verified its effectiveness.
王波张宁林泉陈松灿李玉华
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION被引量:3
2008年
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.
蔡维玲丁军娣
基于AUC的分类器评价和设计综述被引量:49
2011年
尽管精度(或总体错分率)普遍用作分类算法的性能评价指标,但存在诸如敏感于类先验分布和错分代价,忽略分类算法所得的后验概率或排序信息等不足.而接收者操作特性(ROC)曲线下面积则能度量算法在整个类先验分布及错分代价范围内的总体分类性能、后验概率和排序性能,因此在分类学习中受到越来越多的关注,由此涌现出众多研究成果.文章旨在对此作相对全面的回顾和总结,包括AUC作为性能评价指标的优势所在,基于AUC优化的算法设计,基于精度优化和AUC优化的算法间的关系以及AUC存在的不足及改进.
汪云云陈松灿
关键词:分类器设计
基于无线传感器网络拓扑结构的物联网定位模型被引量:75
2010年
无线传感器网络是物联网(Internet of Things)的重要组成部分,利用其实现物联网中目标的定位技术已成为研究热点之一.由于受环境、障碍物、网络攻击和硬件错误等诸多因素的影响,传感器节点所采集的数据易产生较大误差,形成错误数据,从而对定位造成严重影响.尽管已发展出了众多定位算法和模型,但针对错误数据实现定位的研究还较罕见,尤其在国内,几乎是空白.文中针对上述问题,旨在利用网络(几何)拓扑结构信息,提出一种用局部信息刻画全局分布密度信息的新颖物联网定位模型:鲁棒的局部保持的典型相关分析定位模型LE-RLPCCA.与现有同类典型方法在真实环境中的实验结果相比,LE-RLPCCA具有更高的定位鲁棒性和稳定性.
顾晶晶陈松灿庄毅
关键词:物联网无线传感器网络拓扑结构错误数据
监督型局部保持的典型相关分析
2010年
利用数据集的局部结构信息和判别结构信息,构建相似度矩阵和类信息矩阵,提出监督型局部保持的典型相关分析(Supervised Locality Preserving Canonical Correlation Analysis,SLPCCA),该方法不但突破了典型相关分析(Canonical Correla-tion Analysis,CCA)处理数据时的线性约束,提高了处理非线性问题的能力,而且克服了局部保持的典型相关分析(LocalityPreserving Canonical Correlation Analysis,LPCCA)忽视类信息的问题,提取的特征更有利于分类.在多特征手写体数据库(MFD)和美国国家邮政局手写字库(USPS)上的实验结果验证了该算法的有效性.
陈晓红陈松灿
关键词:流形学习
Disambiguating Authors by Pairwise Classification被引量:1
2010年
Name ambiguity is a critical problem in many applications, in particular in online bibliography sys-tems, such as DBLP, ACM, and CiteSeerx. Despite the many studies, this problem is still not resolved and is becoming even more serious, especially with the increasing popularity of Web 2.0. This paper addresses the problem in the academic researcher social network ArnetMiner using a supervised method for exploiting all side information including co-author, organization, paper citation, title similarity, author's homepage, web constraint, and user feedback. The method automatically determines the person number k. Tests on the researcher social network with up to 100 different names show that the method significantly outperforms the baseline method using an unsupervised attribute-augmented graph clustering algorithm.
林泉王波杜圆王雪至李玉华陈松灿
DISCRIMINATIVE REGULARIZATION:A NEW CLASSIFIER LEARNING METHOD
2009年
A novel regularization method -- discriminative regularization (DR)is presented. The method provides a general way to incorporate the prior knowledge for the classification. By introducing the prior information into the regularization term, DR is used to minimize the empirical loss between the desired and actual outputs, as well as maximize the inter-class separability and minimize the intra-class compactness in the output space simultane- ously. Furthermore, by embedding equality constraints in the formulation, the solution of DR can solve a set of linear equations. Classification experiments show the superiority of the proposed DR.
薛晖
类依赖的相关性多类分类器
2010年
典型相关分析(CCA)是利用样本的相关性进行特征提取的一种重要的降维方法,而相关性判别分析(CDA)则是在特征空间中最大化同类样本对间的相关性,同时最小化不同类样本对间的相关性,可看作类依赖的典型相关分析。这两种方法的特征提取与其后的分类器是两个相互独立的过程,如此不可避免地会影响分类器的性能。借助正则单纯形的顶点等距并具有仿射不变性的特性,将其作为类标号编码,把样本中包含的类信息结合到分类器设计中,最大化各个样本与其类标号的相关性,同时最小化样本与其余类标号之间的相关性,得到类依赖的相关性多类分类器(CCMC)。进一步通过与经验核相结合,获得了具有更强分类性能的核化版非线性分类器EK-CCMC。人工数据集和部分UCI数据集上的实验结果表明,利用类依赖的相关性直接设计分类器可以提高分类性能。
陈晓红
关键词:线性判别分析特征提取
共1页<1>
聚类工具0