Maize (Zea mays L.) is one of the world’s major food crops, and often suffers from tremendous yield loss caused by abiotic stresses. The MADS-box genes are known to play versatile roles in plants, controlling plant responses to multiple abiotic stresses. However, understanding of regulation of their expressions by the conventional loss-of-function approach is very dififcult. So far, regulation of MADS-box gene expression is little known. The best approach to retrieve expression regulation of this category of genes is to characterize expression of their promoters. In this study, the promoter of a homolog (GenBank accession no. EC864166) of maize MADS-box gene m18 was cloned by way of genome-walking PCR, named Pro66. Predicative analysis indicated that Pro66 contains more than one TATA box and multiple cis-acting environmental conditions-responsive elements (ECREs). Pro66 could drive expression of theβ-glucuronidase (GUS)-encoding gene in maize, and heterologous expression of GUS in red pepper stressed by water deifcit, salt, copper, iron deifciency, heat, cold, and grown under short and long photoperiods, echoing predicative ECREs. Conclusively, maize MADS-box gene m18 likely plays versatile functions in maize response to multiple abiotic stresses due to the promoter with multiple cis-acting elements. The complex arrangement of multiple cis-acting elements in the promoter features meticulously regulated expression of m18. The results give informative clues for heterologous utilisation of the promoters in monocot and dicot species. The copy of the ECREs and heterologous expression of the promoter in dicot species are also discussed.