The Western Kunlun Range in northern Qinghai-Tibet Plateau is composed of the North Kunlun Terrane,the South Kunlun Terrane and the Karakorum-Tianshuihai Terrane. Here we report zircon SHRIMP and LA-ICP-MS U-Pb ages of some metamorphic and igneous rocks and field observations in order to pro-vide a better understanding of their Precambrian and Palaeozoic-early Mesozoic tectonic evolution. Based on these data we draw the following conclusions: (1) The paragneisses in the North Kunlun Terrane are likely of late Mesoproterozoic age rather than Palaeoproterozoic age as previously thought,representing tectonothermal episodes at 1.0―0.9 Ga and ~0.8 Ga. (2) The North Kunlun Terrane was an orogenic belt accreted to the southern margin of Tarim during late Mesoproterozoic to early Neopro-terozoic,the two episodes of metamorphisms correspond to the assemblage and breakup of Rodinia respectively. (3) The Bulunkuole Group in western South Kunlun Terrane,which was considered to be the Palaeoproterozoic basement of the South Kunlun Terrane by previous studies,is now subdivided into the late Neoproterzoic to early Palaeozoic paragneisses (khondalite) and the early Mesozoic metamorphic volcano-sedimentary series; the paragneisses were thrust onto the metamorphic vol-cano-sedimentary series from south to north,with two main teconothermal episodes (i.e.,Caledonian,460―400 Ma,and Hercynian-Indosinian,340―200 Ma),and have been documented by zircon U-Pb ages. (4) In the eastern part of the South Kunlun Terrane,a gneissic granodiorite pluton,which intruded the khondalite,was crystallized at ca. 505 Ma and metamorphosed at ca. 240 Ma. In combination with geochronology data of the paragneiss,we suggest that the South Kunlun Terrane was a Caledonian accretionary orogenic belt and overprinted by late Paleozoic to early Mesozoic arc magmatism.
Neoproterozoic magmatic rocks are widespread in the western margin of the Yangtze block, and their origin and genesis have significant implications for understanding the evolution of the Rodinia super- continent. However, there are currently two opposing interpretations for their petrogenesis and tectonic setting: mantle plume-related and island arc origin. To further verify these two competing models, SHRIMP U-Pb zircon age determinations and geochemical and Nd-Hf isotopic analyses are conducted on the mafic dykes in the Kangdian Rift, western Sichuan. U-Pb dating suggests that these mafic dykes were emplaced at 780―760 Ma, spatially and temporally coeval with the Kangding granitoid complex. The parental magmas of these dykes were derived from a depleted asthenosphere mantle source likely triggered by an anomalously-hot mantle plume. Despite some arc-geochemical features caused by variable degrees of contamination of young island arc crust during magma ascending and emplace- ment, they show general geochemical and Nd-Hf isotopic features similar to those of the intraplate basalts. Our results support the reconstruction model of Rodinia in which the South China block was located between Australia and Laurentia.
The SHRIMP zircon U-Pb geochronology ofthree typically Indosinian granitic plutons with peralumi-nous and potassium-rich affinities (Tangshi ultraunit forWeishan and Baimashan, and Longtan ultraunit forGuandimiao) is presented in Hunan Province, South China.The analyses of zircons from biotite monozonite granites forWeishan, Baimashan and Guandimiao plutons show the sin-gle and tight clusters on the concordia, and yield theweighted mean 206Pb/238U ages of 244±4, 243±3 and 239±3Ma, respectively, representing the crystallized ages of theseIndosinian granites. These data suggest that the Indosiniangranitic plutons as previously thought formed at a narrowage span. In combination with other data, it is inferred thatthe Indosinian granites within the South China Block proba-bly distributed in Hunan, Jiangxi, Guangxi and Guangdongprovinces as planar shape, and were the derivation of thecrustal materials in the intracontinental thickening setting.These precisely geochronological data provide importantconstraints for better understanding the spatiotemporal pat-tern of the Indosinian peraluminous granites and earlyMesozoic tectonic evolution of the South China Block.