您的位置: 专家智库 > >

国家自然科学基金(11071067)

作品数:7 被引量:23H指数:2
相关作者:胡宏伶陈传淼褚玉明徐言午候守伟更多>>
相关机构:湖南师范大学杭州师范大学上海财经大学更多>>
发文基金:国家自然科学基金中国博士后科学基金国家教育部博士点基金更多>>
相关领域:理学化学工程更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 7篇理学
  • 1篇化学工程

主题

  • 2篇NEWTON
  • 2篇FINITE...
  • 2篇EXTRAP...
  • 1篇单调性
  • 1篇对数平均
  • 1篇英文
  • 1篇上下界
  • 1篇收敛性
  • 1篇下界
  • 1篇线性方程组
  • 1篇计算量
  • 1篇共轭梯度
  • 1篇共轭梯度法
  • 1篇方程组
  • 1篇非线性
  • 1篇非线性方程组
  • 1篇NEW
  • 1篇RANDOM
  • 1篇REGULA...
  • 1篇SOLUTI...

机构

  • 2篇湖南师范大学
  • 1篇杭州师范大学
  • 1篇湖州师范学院
  • 1篇上海财经大学

作者

  • 2篇陈传淼
  • 2篇胡宏伶
  • 1篇候守伟
  • 1篇徐言午
  • 1篇褚玉明

传媒

  • 2篇Scienc...
  • 1篇计算数学
  • 1篇湖南师范大学...
  • 1篇湖州师范学院...
  • 1篇Journa...
  • 1篇Applie...

年份

  • 1篇2017
  • 1篇2014
  • 2篇2013
  • 1篇2012
  • 2篇2011
7 条 记 录,以下是 1-7
排序方式:
ON EXTRAPOLATION CASCADIC MULTIGRID METHOD被引量:11
2011年
Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some new extrapolations and quadratic interpolations, which are used to provide better initial values on the refined grid. In the case of triple grids, the errors of the new initial values are analyzed in detail. The numerical experiments show that EXCMG has higher accuracy and efficiency.
Chuanmiao ChenZhong-Ci ShiHongling Hu
非线性方程组的Newton流线法被引量:8
2012年
为求解非线性方程组F(x)=0,研究了Newton流方程x_t(t)=V(x)=-(DF(x))^(-1)F(x),x(0)=-x^0,及数值Newton流x^(j+1)=x^j+hV(x^j),h∈(0,1].导出了减幅指标g_j(h)=‖F(x^(j+1)‖/‖F(x^j)‖=1-h+h^2d_j(h)<1和m重根x~*附近的表示g_j(h)=(1-h/m)~m+h^2O(‖x^j-x~*‖).最后基于4个可计算量g_j,d_j,K_j,q_j,提出了新的Newton流线法,如果投入大量的随机初始点,能找到所有实根、重根和复根.
陈传淼胡宏伶雷蕾曾星星
关键词:非线性方程组
共轭梯度法的l^2模收敛性研究
2013年
讨论了共轭梯度法(Conjugate Gradient,CG)在l2模意义下的单调性与收敛性.所得结论对结合共轭梯度法来求解大规模线性方程组的各类方法,特别是对研究外推瀑布式多重网格法(EXCMG)按l2模的收敛性有重要作用.
胡宏伶陈传淼
关键词:共轭梯度法单调性收敛性
对数平均的最佳上下界(英文)
2011年
利用初等微分学比较了对数平均与平方根平均和调和平方根平均的凸组合,发现了使得双向不等式αS(a,b)+(1-α)H(a,b)0且a≠b成立的α的最大值和β的最小值,其中S(a,b)=((a2+b2)/2)^(1/2),H(a,b)=2^(1/2)ab/(a2+b2)^(1/2)和L(a,b)=(a-b)/(loga-logb)分别表示二个正数a与b的平方根平均、调和平方根平均和对数平均.
候守伟徐言午褚玉明
关键词:对数平均
Asymptotic expansions of finite element solutions to Robin problems in H^3 and their application in extrapolation cascadic multigrid method被引量:1
2014年
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.
HU HongLingCHEN ChuanMiaoPAN KeJia
Global existence of real roots and random Newton flow algorithm for nonlinear system of equations To memorize Qin's method for 770 anniversaries被引量:1
2017年
To solve nonlinear system of equation,F(x) = 0,a continuous Newton flow x_t(t) = V(x) =-(DF(x))^(-1)F(x),x(0) =x^0 and its mathematical properties,such as the central field,global existence and uniqueness of real roots and the structure of the singular surface,are studied.We concisely introduce random Newton flow algorithm(NFA) for finding all roots,based on discrete Newton flow x^(j+1)=x^j+hV{x^j) with random initial value x^0 and h∈(0,1],and three computable quantities,g_j,d_j and K_j.The numerical experiments with dimension n=300 are provided.
CHEN ChuanMiaoHU HongLing
Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system被引量:2
2013年
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.
胡妹芳陈传淼
关键词:SYMPLECTICITY
共1页<1>
聚类工具0