Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some new extrapolations and quadratic interpolations, which are used to provide better initial values on the refined grid. In the case of triple grids, the errors of the new initial values are analyzed in detail. The numerical experiments show that EXCMG has higher accuracy and efficiency.
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.
To solve nonlinear system of equation,F(x) = 0,a continuous Newton flow x_t(t) = V(x) =-(DF(x))^(-1)F(x),x(0) =x^0 and its mathematical properties,such as the central field,global existence and uniqueness of real roots and the structure of the singular surface,are studied.We concisely introduce random Newton flow algorithm(NFA) for finding all roots,based on discrete Newton flow x^(j+1)=x^j+hV{x^j) with random initial value x^0 and h∈(0,1],and three computable quantities,g_j,d_j and K_j.The numerical experiments with dimension n=300 are provided.
The symplectic algorithm and the energy conservation algorithm are two important kinds of algorithms to solve Hamiltonian systems. The symplectic Runge- Kutta (RK) method is an important part of the former, and the continuous finite element method (CFEM) belongs to the later. We find and prove the equivalence of one kind of the implicit RK method and the CFEM, give the coefficient table of the CFEM to simplify its computation, propose a new standard to measure algorithms for Hamiltonian systems, and define another class of algorithms --the regular method. Finally, numerical experiments are given to verify the theoretical results.