The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been stud- ied by different extracting methods with CHCl3, MAC and CS2/NMP, respectively. The results suggest that there are great differences among the chemical compositions of organic matter in the source rocks derived from different depositional environments. About 79% of all the organic matter exists by non- covalent bond in the Es4 source rocks which were deposited under the saline lacustrine, indicating that its organic matter is not the real kerogen, but mainly composed of soluble organic matter which is easy to generate hydrocarbon at lower temperature. This is why the immature oils were derived from Es4 source rocks in Dongying depression. In contrast, around 60% of organic matter exists by covalent bond in Es3 source rocks which were deposited under the deep brackish-fresh lacustrine, showing that Es3 source rocks are mainly composed of kerogen producing mature hydrocarbon at higher temperature. The thermal simulation experiments, upon the remaining solid source rocks which were sequentially extracted by the three solvents, have been carried out. The chloroform extracts from the simulation product have been compared with the other three solvent extracts gained at room temperature. It is obvious that re-markable odd/even predominance (OEP) is mainly the characteristic of soluble organic matter; phytane mostly exists in the soluble organic matter by means of non-covalent bonds and characteristics of soluble organic matter are similar to these in immature oils produced in Jiyang super-depression.
A环上带C-2或C-3位取代基的甲基藿烷常常用于反映细菌的新陈代谢过程(Summons et al., 1999)。通过GC-MS和GC-MS-MS分析,在济阳坳陷古近系湖相沉积岩中检测到了丰富而完整的C28-C362α-甲基藿烷系列。2-甲基藿烷来源于蓝细菌体内的2β-甲基细菌藿烷多醇(Summons et al.,1999),在成岩作用中这种多羟基化合物易于结合到干酪根中,并在随后的热降解生烃过程中释放出2-甲基藿烷。2-甲基藿烷具有与藿烷类似的异构化反应,但转化速率和热力学平衡点有所变化。2-甲基藿烷的发育与古沉积环境的关系最为密切,高丰度2-甲基藿烷仅出现在浅水、低能量的碳酸盐岩沉积环境中,随着成熟度增加,2-甲基藿烷指数增大,随着湖盆水体扩大和深度增加,2-甲基藿烷指数迅速减小;在整个生烃阶段泥质岩中2-甲基藿烷都不发育。2-甲基藿烷的组成和分布形式反映了水体氧化还原条件的变化。2-甲基藿烷对于古沉积环境的恢复和古生态的重建具有重要意义,应用于陆相盆地的油气勘探则有助于更加准确地厘定有效烃源岩体。