This study aimed to investigate the ability of the novel materials D-α-tocopheryl poly(2-ethyl-2-oxazoline) succinate(TPOS) to construct pH-sensitive liposomes. TPOS was initially synthesized and characterized by TLC, FTIR, and ~1H-NMR. The buffering capacity of polyethylene glycol-distearoyl phosphatidylethanolamine(PEG-DSPE) and TPOS was determined by acid-base titration, and TPOS displayed a slower downtrend and gentler slope of titration curve than PEG-DSPE within pH 7.4–5.0. Studies on the in vitro drug release demonstrated that TPOS modified docetaxel(DOC) liposomes(TPOS-DOC-L) had a slower drugrelease rate at pH 7.4 similar to PEGylated-DOC liposomes(PEG-DOC-L), whereas the release rate reached approximately 86.92% ± 1.69% at pH 6.4. In vitro cellular uptake assays by microplate reader, and flow cytometry revealed that TPOS modified coumarin 6 liposomes(TPOS-C6-L) had stronger cellular uptake at pH 6.4 than that at pH 7.4( P < 0.01). Conversely, for PEGylated C6 liposomes(PEG-C6-L) and conventional C6 liposomes(C6-L), very similar cellular uptakes were exhibited at different pH values. Confocal laser scanning microscopy images showed that PEG-C6-L and C6-L were mainly located in lysosomes. By contrast, TPOS-C6-L showed broader cytoplasmic release and distribution at 4 h. MTT assay showed that the cytotoxicity of TPOS-DOC-L was similar to that of PEG-DOC-L and conventional DOC liposomes(DOC-L) at the same DOC concentration and at pH 7.4, but was much lower than those at pH 6.4 after 48 h of incubation. The apoptosis of PEG-DOC-L and DOC-L had no remarkable improvement with decreased pH from 7.4 to 6.4. Meanwhile, TPOS-DOC-Lsignificantly induced the apoptosis of HeLa cells with decreased pH. Therefore, TPOS can be a biomaterial for the construction of a pH-sensitive drug delivery system.
Shu HanRuiyang SunHong SuJing LvHuan XuDi ZhangYuanshan Fu