预测状态表示(Predictive State Representations,PSRs)是用于解决局部可观测问题的有效方法.然而,现实环境中,通过样本学习得到的PSR模型不可能完全准确.随着计算步数的增多,利用PSR模型计算得到的预测向量有可能越来越偏离其真实值,进而导致PSR模型的预测精度越来越低.文中提出了一种PSR模型的复位算法.通过使用判别分析方法确定系统所处的PSR状态,文中所提算法可对利用计算获取的预测向量复位,从而提高PSR模型的准确性.实验结果表明,采用复位算法的PSR模型在预测精度上明显优于未采用复位算法的PSR模型,验证了所提算法的有效性.