We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.
Reliable end-to-end quality of service(QoS) guarantee is essential for broadband mobile Internet.Conventional ...
Ding Ling Yu Ke Zhang Lin Wu Xiao-Fei Du Ying-Tian Advanced Network Technology Laboratory,School of Information and Communication Engineering Beijing University of Posts and Telecommunications, Beijing 100876,China
In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption
For a single-relay amplify-and-forward (AF) non-cooperative system,an optimal power proportionbetween source and relay is considered.Aiming to minimize end-to-end bit error rate (BER) and maximizeattainable rate,both large-scale path loss and small-scale Rayleigh fading are taken into account.Aclosed form expression to allocate power in optimal proportion at source is obtained.Simulation resultsshow that the proposed scheme to distribute power can minimize BER under any channel conditions.