Liquid Ni-31.7%Sn-2.5%Ge alloy was highly undercooled by up to 238 K(0.17TL) with glass fluxing and drop tube techniques.The dendritic growth velocity of primary Ni3Sn compound shows a power-law relation to undercooling and achieves a maximum velocity of 380 mm/s.The addition of Ge reduces its growth velocity as compared with the binary Ni75Sn25 alloy.A structural transition from coarse dendrites into equiaxed grains occurs once undercooling exceeds a critical value of about 125 K,which is accompanied by both grain refinement and solute trapping.The Ni3Sn intermetallic compound behaves like a normal solid solution phase showing nonfaceted growth during rapid solidification.
Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritectic alloy, even though metastable phase separation occurred to a microscopic extent. Once bulk undercooling exceeds 196 K, macroscopic segregation played a domi- nant role in solidification. In both cases, the solidification process was always characterized by two successive peritectic trans- formations: firstly primary yFe dendrites reacted with liquid phase to form (Cu) phase, and subsequently the (Cu) phase reacted with residual liquid phase to yield β-Cu5.6Sn intermetallic compound. The primary yFe dendrites achieved a maximum growth velocity of 400 mm/s and experienced a growth kinetics transition as a result of macrosegregation. Since the (Cu) phase was both the product phase of the first peritectic transformation and also the reactant phase for the second peritectic transformation, it appeared as two layers in solidification microstructures due to the microsegregation of Sn solute. The boundary continuity between the macroscopically separated Fe-rich and Cu-ricb zones was enhanced with the increase of undercooling.
Al-27%Cu-5.3%Si ternary eutectic alloy was melted using a YAG laser and then solidified while being acoustically levitated. A maximum undercooling to 195 K (0.24 TL) was achieved with a cooling rate of 76 K/s. The solidification microstructure was composed of (Al+θ+Si) ternary eutectics and (Al+θ) pseudobinary eutectics. During acoustic levitation, the (Al+θ+Si) ternary eutectics are refined and the (Al+θ) pseudobinary eutectics have morphological diversity. On the surface of the alloys, surface oscillations and acoustic streaming promote the nucleation of the three eutectic phases and expedite the cooling process. This results in the refinement of the ternary eutectic microstructure. During experiments, the reflector decreases with increasing alloy temperature, and the levitation distance always exceeds the resonant distance. Because of the acoustic radiation pressure, the melted alloy was flattened, and deformation increases with increasing sound pressure. The maximum aspect ratio achieved was 6.64, corresponding to a sound pressure of 1.8×104 Pa.
We report on the ninth-mode sectorial oscillation of acoustically levitated drops excited by actively modulating sound pressure. A numerical computation based on the level set method was performed to model drop shape evolution by solving an incompressible two-phase flow problem. The calculated shapes of the oscillating drop are in good agreement with experimental observations. The relationship between the oscillation frequency and parameters describing the flattened drops is studied both experimentally and numerically. The frequency of the ninth-mode sectorial oscillation decreases with increasing equatorial radius and can be well-described by a modified Rayleigh equation.
Using liquid Fe 60 Cu 40 alloy as a model, the structure of liquid Fe-Cu alloy systems is investigated in the temperature range 1200 2200 K, covering a large metastable undercooled regime, to understand the phase separation of liquid Fe-Cu alloys on the atomic scale. The total pair distribution functions (PDFs) indicate that liquid Fe 60 Cu 40 alloy is ordered in the short range and disordered in the long range. If the atom types are ignored, the total atom number densities and PDFs demonstrate that the atoms are distributed homogenously in the liquid alloy. However, the segregation of Fe and Cu atoms is very obvious with decreasing temperature. The partial PDFs and coordination numbers show that the Cu and Fe atoms are not apt to get together on the atomic scale at low temperatures; this will lead to large fluctuations and phase separation in liquid Fe-Cu alloy.