To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, re- spectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid deel- opment of the photochemical process in the ionosphere should be the underlying reason.
Using the Cluster cusp crossings data,dependence of the cusp location at the mid-altitude on the geomagnetic dipole tilt during northward IMF is studied.The results show that the cusp center moves 0.051°Invariant Latitude(ILAT)upon the increase of 1°in the dipole tilt angle at the average altitude of 5.8 RE(Earth radius).According to the present results obtained at the altitude of the Cluster orbit and previous results obtained at other altitudes of other satellite orbits,it is found that the higher the altitude in the cusp region is,the bigger the dependence of cusp location on the dipole tilt angle will be.If the altitude increases by 1 RE in the cusp region,the dependence will increase by 0.012°ILAT upon the increase of 1°in the dipole tilt angle.Some possible physical mechanisms are discussed and it shows that the cusp location will be more sensitive to the solar wind dynamic pressure if the altitude is high.
Comparison of regular(diurnal,seasonal and solar cycle)variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron density and the peak height.The local empirical models were derived from the hand-scaled ionogram data recorded by DPS-4 digisondes located at Norilsk(69°N,88°E),Irkutsk(52°N,104°E)and Hainan(19°N,109°E)for a 6-year period from December,2002 to December,2008.The technique used to build the local empirical model is described.The primary focus is diurnal-seasonal behavior under low solar activity and its change with increasing solar activity.Both common and specific features of the high-latitude(Norilsk),mid-latitude(Irkutsk)and low-latitude(Hainan)regular variations were revealed using their local empirical models.
The ionospheric responses to two strong storms on 17-19 August 2003 and 22-23 January 2004 are studied,using the data from Irkutsk(52.5°N,104°E) and Hainan(19.5°N,109°E) ionospheric stations.The analysis of variations in relative deviations of the critical frequency △f_0F_2 revealed that at middle latitudes(Irkutsk) negative disturbances were observed in the summer ionosphere; positive and negative ones,in the winter ionosphere during the main and recovery phases respectively.At low latitudes(Hainan),the disturbances were positive in all the cases considered. Mechanisms of the disturbances were analyzed with the aid of empirical models of the neutral atmosphere NRLMSISE-00 and thermospheric wind HWM07.The main factors determining △f_0F_2 variations at middle latitudes during the storms were demonstrated to be the disturbed equatorward thermospheric wind transporting the disturbed atmospheric composition,the increase in the atomic oxygen concentration,and the passage of internal gravity waves.At low latitudes,the effects associated with neutral composition variations are less significant than those of the thermospheric wind and electric fields.
E B RomanovaG A ZherebtsovK G RatovskyN M PolekhJ K ShiX WangG J Wang
Using the digisonde data observed at ionospheric station Norilsk (Dip lat. 60~N) in 2006, a statistical study on the characteristics of the ionospheric plasma total absorption of radio waves (IPTAR) was performed. In the winter and some months of equinox, the IPTAR mainly occurred in the nighttime and the highest occurrence rate could be up to 90%. In the summer, the occurrence was relatively low and the differences between nighttime and daytime occurrence reduced. The total duration of IPTAR seemed longer around the winter than that around the summer. The occurrence of IPTAR events ascended as the Kp index increased. The frequent precipitation of energetic particles into the ionospheric plasma in the auroral belt may be the main cause of the IPTAR events.