In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel,and two kinds of steels were investigated by this novel combined process.The newly designed process resulted in a sophisticated microstructure of a large amount of ferrite(about 5 m in diameter),martensite and a considerable amount of retained austenite for TRIP 780 steel.The ultimate tensile strength can reach about 1200 MPa with elongation above 16% for TRIP 780,that is much higher than the one solely treated by Q&P process.Tensile tests showed that both steels with the novel combined process achieved a good combination of strength and ductility,indicating that the new process is promising for the new generation of advanced high strength steels.
Microstructural characterization in fusion zone of the laser continuous heat treatment welded joint was in vestigated. The results showed that the martensite-like microstructure is the face centered cubic (FCC) crystal structure so that it can be identified as the secondary austenite. The dislocation is observed inside and outside the seconda ry austenite, whereas inclusion is not found in the vicinity of the secondary austenite. In the fusion zone, there is a kind of carbide precipitate which is identified as M23 C6 by the means of transmission electron microscope (TEM). The carbide precipitate is a representative mode of transformation, which can be generated by the eutectoid reaction. Furthermore, the formation mechanisms of the secondary austenite and chromium carbide are analyzed.
He-ping LIUBin LIUDa-zhao LIHu-er SUNFeng-er SUNXue-jun JIN
Intercritical annealing(IA) at various temperatures followed by quenching and partitioning(IAQP) treatments was conducted on a cold-rolled Fe-0.2C-1.42Si-l.87Mn(wt%) sheet steel.Optimized microstructure and enhanced mechanical properties were achieved through appropriate adjustment of IA temperatures.The steel which was annealed at1,033 K for 600 s,then quenched to 573 K and partitioned at 693 K for 20 min,designated as 1033 QP steel,exhibits maximum 16.3 vol% retained austenite(RA) with good mechanical properties(ultimate tensile strength 886 MPa and total elongation 27%).It was found that the thermal and mechanical stabilities of RA are mainly influenced by the combined effect of its average carbon content and amount of adjacent martensite.Furthermore,the transformation-induced plasticity effect increased the peak n-values observed at the second stage of the work hardening of IAQP steels.
Ri-Ming WuWei LiCheng-Lin WangYi XiaoLi WangXue-Jun Jin
In this work, the influence of sub-zero Celsius treatment and tempering on the mechanical and thermal stability of retained austenite in beating steel were assessed by tensile test and DSC. Compared with traditional quenched and tempered treatment, sub-zero Celsius treatment obviously decreases the volume fraction of retained austenite. Moreover, the mechanical stability of retained austenite was enhanced due to the accumulation of compressive stresses in retained austenite after sub-zero Celsius treatment and tempering. Meanwhile, the morphology of retained austenite changed from film-like to blocky with austenitization temperature increasing, and the mechanical stability of film-like retained austenite is higher than that of blocky one. The DSC results showed that the activation energy of retained austenite decomposition slightly increased through sub-zero Celsius treatment and tempering. This result may probably be ascribed to partitioning of carbon during tempering. However, the temperature at which retained austenite starts to decompose is unchanged.
Xiao-Hui LuWei LiCheng-Lin WangHong-Shan ZhaoXue-Jun Jin