The two-dimensional primitive equations with Lévy noise are studied in this paper.We prove the existence and uniqueness of the solutions in a fixed probability space which based on a priori estimates,weak convergence method and monotonicity arguments.
A conceptual model for microscopic-macroscopic slow-fast stochastic systems is considered. A dynamical reduction procedure is presented in order to extract effective dynamics for this kind of systems. Under appropriate assumptions, the effective system is shown to approximate the original system, in the sense of a probabilistic convergence.
This paper discusses the relation between the long-time dynamics of solutions of the two-dimensional (2D) incompressible non-Newtonian fluid system and the 2D Navier-Stokes system. We first show that the solutions of the non-Newtonian fluid system converge to the solutions of the Navier-Stokes system in the energy norm. Then we establish that the global attractors {.Aε^H}0〈≤1 of the non-Newtonian fluid system converge to the global attractor .A0H of the Navier-Stokes system as ε → 0. We also construct the minimal limit A^H min of the H global attractors {Aε^H}0〈ε≤ as ≤→ 0 and prove that A^Hmin iS a strictly invariant and connected set.
Nonlinear dynamical systems are sometimes under the influence of random fluctuations. It is desirable to examine possible bifurcations for stochastic dynamical systems when a parameter varies.A computational analysis is conducted to investigate bifurcations of a simple dynamical system under non-Gaussian a-stable Levy motions, by examining the changes in stationary probability density functions for the solution orbits of this stochastic system. The stationary probability density functions are obtained by solving a nonlocal Fokker-Planck equation numerically. This allows numerically investigating phenomenological bifurcation, or P-bifurcation, for stochastic differential equations with non-Gaussian Levy noises.