In this paper, we adopt the modified Morozov secondary electron emission model to investigate the influence of the characteristic of a space-charge-saturated sheath near the insulated wall of the Hall thruster on the near-wall conductivity, by the method of two-dimensional (2D) particle simulation (2Dq-3V). The results show that due to the sharp increase of collision frequency between the electrons and the wall under the space-charge-saturated sheath, the near-wall transport current under this sheath is remarkably higher than that under a classical sheath, and equals the near-wall transport current under a spatially oscillating sheath in order of magnitude. However, the transport currents under a space-charge-saturated sheath and a spatially oscillating sheath are different in mechanism, causing different current density distributions under the above two sheaths, and a great influence of channel width on the near-wall transport current under a space-charge-saturated sheath.
在磁场不变的情况下,随着霍尔(Hall)推力器放电电压的提高,其通道内的最大电子温度会在一定的电压区间内出现"饱和"现象。为进一步理解这一现象,在完成了变电压不变磁场PIC(Particle in cell)模拟的基础上,首先分析了电子能量的平衡机制的构成要素和最大电子温度的影响因素,进而对各个影响因素在变电压下的变化趋势进行了研究。结果显示:最大电子温度点上游区域的电场加热效应是最大电子温度变化的主导因素,而上游区域的电子与壁面碰撞效应对最大电子温度的变化起到一定的调节作用。在高电压下,由于磁场无法有效束缚电子,上游区域的电子数密度急剧降低,导致电子壁面碰撞能量损失大幅降低,使得碰撞损失对最大电子温度的影响变得较为微弱。进一步指出了磁场在霍尔推力器变电压运行中的核心地位,并提出了高电压放电优化的2个方向:增大放电磁场以及更换二次电子发射系数更高的陶瓷壁面。