选用天然多糖中唯一的碱性多糖——壳聚糖作为稳定剂和包裹剂,成功合成了水溶性的Ag In S2量子点/低分子量壳聚糖纳米复合材料(Ag In S2/LCSMS)。利用透射电子显微镜(TEM)、FT-IR傅里叶红外光谱仪、紫外吸收光谱、荧光分光光度计等表征手段对纳米复合材料的形貌、化学组成及光学性质进行了研究。结果表明,Ag In S2/LCSMS纳米复合材料的粒径约为5~6 nm,在水相中仍具有较稳定的发光。之后,对Ag In S2/LCSMS纳米复合材料的生物相容性进行了研究,对比Ag In S2/LCSMS纳米复合材料与Ag In S2量子点的细胞活性测试结果发现,Ag In S2/LCSMS纳米复合材料的细胞活性比Ag In S2量子点有了明显的提高,说明通过低分子量壳聚糖的包裹可以明显提高纳米材料的生物相容性。因此,这类具有较好水溶性和生物相容性的荧光Ag In S2/LCSMS纳米复合材料可作为优良的生物荧光标记材料在生物医学检验、细胞以及活体成像研究中有广泛的应用前景。
成功制备出高品质的三元Ag In S2量子点。通过配体交换法将油溶性Ag In S2量子点转为水溶性量子点,通过d BSA修饰水溶性量子点形成配位体壳,使量子点具有更好的稳定性(4周)。从透射电子显微镜(TEM)观察到d BSA修饰后的量子点的粒径增加,分散性较好,并且在可见光区域有明显的光致发光。用叶酸对d BSA-MPA量子点进行修饰,并通过傅立叶变换红外光谱进行了验证。将得到的FA-d BSA-MPA纳米复合材料应用于能与叶酸受体特异性结合的乳腺癌细胞中,并在荧光倒置显微镜中检测到量子点成功对乳腺癌细胞进行了标记。与d BSA-MPA量子点相比,表面被叶酸修饰后的量子点与癌细胞的结合效率显著提高。
以表面修饰巯基十一烷酸的金纳米棒(GNRs/MUA)为骨架,将低分子量的聚乙烯亚胺(PEI)连接到GNRs/MUA表面,构建GNRs/MUA/PEI纳米载体。首先采用MUA对GNRs进行表面修饰,减少由于GNRs表面的十六烷基三甲基溴化铵(CTAB)所造成的生物毒性。然后采用低分子量PEI进一步修饰,同时利用GNRs巨大的比表面积进一步放大PEI的携带基因能力,这样既能够降低阳离子聚合物的毒性,又能够提高整个体系的转染效率。利用透射电子显微镜(TEM)、紫外可见吸收光谱(UV-Vis)、Zeta电位等对纳米载体进行了表征。结果显示,MUA与PEI已成功修饰到GNRs表面,并很好地保留了GNRs的光学性质,其表面电位发生正负交替变化。采用噻唑蓝(MTT)比色法对纳米载体进行细胞毒性研究,结果显示GNRs/MUA/PEI(1.8 k Da)非病毒纳米载体,细胞存活率在控制聚合物浓度为300μg/m L时仍然稳定在75%以上,明显高于商品化的PEI(25 k Da)。
We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 10 fs/800 nm Ti-sapphire laser and a two-color field consisting of 30 fs/532 nm and 30 fs/1330 nm pulses. Compared with harmonic spectrum generated by a monochromatic field, the harmonics generated from the synthesized three-color field show a supercontinuum spectrum with a bandwidth of 235 eV, ranging from the 154th to the 306th order harmonic. This phenomenon can be attributed to the fact that the ionization of atoms as well as motion of ionized electron can be effectively controlled in the three-color field. Therefore, an isolated 46-as pulse can be generated by superposing supercontinuum from the 160th to the 210th order harmonics.