您的位置: 专家智库 > >

国家自然科学基金(61370000)

作品数:1 被引量:0H指数:0
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇自动化与计算...
  • 1篇理学

主题

  • 1篇RELATI...
  • 1篇UNIFOR...
  • 1篇MARKOV...
  • 1篇SAMPLE...
  • 1篇ERGODI...

传媒

  • 1篇Acta M...

年份

  • 1篇2014
1 条 记 录,以下是 1-1
排序方式:
Generalization Bounds of ERM Algorithm with Markov Chain Samples
2014年
One of the main goals of machine learning is to study the generalization performance of learning algorithms. The previous main results describing the generalization ability of learning algorithms are usually based on independent and identically distributed (i.i.d.) samples. However, independence is a very restrictive concept for both theory and real-world applications. In this paper we go far beyond this classical framework by establishing the bounds on the rate of relative uniform convergence for the Empirical Risk Minimization (ERM) algorithm with uniformly ergodic Markov chain samples. We not only obtain generalization bounds of ERM algorithm, but also show that the ERM algorithm with uniformly ergodic Markov chain samples is consistent. The established theory underlies application of ERM type of learning algorithms.
Bin ZOUZong-ben XUJie XU
共1页<1>
聚类工具0