A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.
The adjacency matrix operations,which connect with configuration transformation correspondingly,can be used for analysis of configuration transformation of metamorphic mechanisms and the corresponding algorithm can easily be simulated by computer.But the adjacency matrix based on monochrome topological graph is not suitable for the topological representation of mechanisms with multiple joints.The method of adjacency matrix operations has its own limitations for analysis of configuration transformation of metamorphic mechanisms because it can only be used in the topological representation of mechanisms with single joints.In order to overcome the drawback of the adjacency matrix,a kind of new matrix named as extended adjacency matrix is proposed to express topological structures of all mechanisms.The extended adjacency matrix is not only suitable for the topological representation of mechanisms with single joints,but also can be used in that of mechanisms with multiple joints.On this basis,a method of matrix operations based on the extended adjacency matrix is proposed to analyze the configuration transformation of metamorphic mechanisms.The method is not only suitable for configuration analysis of metamorphic mechanisms with single joints as well as metamorphic mechanisms with multiple joints.The method is evaluated by calculating two examples representing metamorphic mechanisms with single joint and multiple joints respectively.It can be concluded that the method is effective and correct for analysis of configuration transformation of all metamorphic mechanisms.The proposed method is simple and easy to be achieved by computer programming.It provides a basis for structural synthesis of all metamorphic mechanisms.