I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson their smartphones, the loss of which could have serious con- sequences.
In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to effectively discover backdoor behaviors, such as stealing secret information and injecting evil data into system, with less false negatives. With concolic execution on predetermined path, the backdoor trigger condition can be extracted and analyzed to achieve high accuracy. BASEC has been implemented and experimented on several software backdoor samples widespread on the Internet, and over 90% of them can be detected. Compared with behavior-based and system-call-based detection methods, BASEC relies less on the historical sample collections, and is more effective in detecting software backdoors, especially those injected into software by modifying and recompiling source codes.