Transitions of the 6υ3 overtone band of ^14N2 ^16O near 775 nm have been studied by continuous-wave cavity ring-down spectroscopy. Line positions and intensities were derived from a fit of the line shape using a hard-collisional profile. The line positions determined with absolute accuracy of 5×10^-4 cm^-1 allowed us to reveal finer ro-vibrational couplings taking place after J〉14 except a strong anharmonic interaction identified by the effective Hamiltonian model. The absolute line intensities have also been retrieved with an estimated accuracy of 2% for a majority of the unblended lines. A new set of ro-vibrational and dipole moment parameters were derived from the experimental values. A comparison between the line positions and intensities of the 6υ3 band obtained in this work and those from previous studies is given.
Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H20 in the 1.56 and 1.36 gm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.
In the past decades, combustion chemistry research grew rapidly due to the development of combustion diagnostic methods,quantum chemistry methods, kinetic theory, and computational techniques. A lot of kinetic models have been developed for fuels from hydrogen to transportation fuel surrogates. Besides, multi-scale research method has been widely adopted to develop comprehensive models, which are expected to cover combustion conditions in real combustion devices. However, critical gaps still remain between the laboratory research and real engine application due to the insufficient research work on high pressure and low temperature combustion chemistry. Besides, there is also a great need of predictive pollutant formation model. Further development of combustion chemistry research depends on a closer interaction of combustion diagnostics, theoretical calculation and kinetic model development. This paper summarizes the recent progress in combustion chemistry research briefly and outlines the challenges and perspectives.