In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
We report the measurement of the intensity difference squeezing via the non-degenerate four-wave mixing process in a rubidium atomic vapor medium. Two pairs of balanced detection systems are employed to measure the probe and the conjugate beams, respectively. It is convenient to get the quantum shot noise limit, the squeezed and the amplified noise power spectra. We also investigate the influence of the input extra quadrature amplitude noise of the probe beam. The influence of the extra noise can be minimized and the squeezing can be optimized under the proper parameter condition. We measure the -3.7-dB intensity difference squeezing when the probe beam has a 3-dB extra quadrature amplitude noise. This result is slightly smaller than -4.1 dB when the ideal coherent light (no extra noise) for the probe beam is used.