In the present work,a stable two-dimensional(2D)P_(2)Si monolayer was predicted.The monolayer is semimetallic/metallic under the PBE/HSE06 functional and is mechanically isotropic.The stability of the P_(2)Si monolayer has been proved via cohesive energy,mechanical criteria,molecular dynamics simulation,and phonon dispersion respectively,and the monolayer possesses high carrier mobility which is three times that of Mo S_(2).On the other hand,the catalytic performance of the P_(2)Si monolayer modified with a single transition metals(M=Sc-Cu)atom for the electrochemical reduction of CO_(2)was investigated,and the monolayer can catalyze CO_(2)with three constraints:stable molecular dynamics,high migration potential of metal atoms,and suitable band gap for electrocatalyst after metal doping exhibiting excellent catalytic stabilization activity and CRR selectivity.In addition,the reduction product of V@P_(2)Si is HCOOH with an overpotential as low as 0.75 V,and the most suitable reaction path is^(*)CO_(2)→^(*)CHOO→O^(*)CHOH→^(*)+HCOOH with the final reduction product HCOOH obtained.As a whole,the above results endow the P_(2)Si monolayer to be a good 2D material holding great promises for applications in nanoelectronics and CO_(2)reduction catalysts.
Chaozheng HeHouyong YangXi FuXiaoli ChengJiyuan GuoLing Fu
Using particle swarm optimization(PSO)methodology for crystal structure prediction,we predicted a novel two-dimensional(2 D)monolayer of silicide diphosphorus compound:SiP_(2),which exhibits good stability as examined via cohesive energy,mechanical criteria,molecular dynamics simulation and all positive phonon spectrum,respectively.The SiP_(2)monolayer is an indirect semiconductor with the band gap as 1.8484 eV(PBE)or 2.681 eV(HSE06),which makes it more advantageous for high-frequencyresponse optoelectronic materials.Moreover,the monolayer is a relatively hard auxetic material with negative Possion’s ratios,and also possesses a ultrahigh carrier mobility(1.069×10^(5)cm^(2)V^(-1)s^(-1))which is approximately four times the maximum value in phosphorene and comparable to the value of graphene and CP monolayers.Furthermore,the effects of strains on band structures and optical properties of SiP_(2)monolayer have been studied,as well as CO_(2)molecules can be strongly chemically adsorbed on the SiP_(2)monolayer.A semiconductor-to-metal transition for-9.5%strain ratio case and a huge optical absorption capacity on the order of 10^(6)cm^(-1)in visible region present.These theoretical findings endow SiP_(2)Monolayer to be a novel 2 D material holding great promises for applications in highperformance electronics,optoelectronics,mechanics and CO_(2)capturing material.
Xi FuHouyong YangLing FuChaozheng HeJinrong HuoJiyuan GuoLiming Li
基于检测物与电极之间直接相互作用的第3代生物传感器是当前研究的热点.文中采用SCC-DFTB与DFT结合的方法,对ZnO量子点与尿酸分子的界面特性进行了理论研究,结果显示ZnO量子点上的锌原子与尿酸分子中的氧原子之间有较强的相互作用,最优化结构的结合能达到了1.59 e V;通过Bader电荷分析,发现ZnO量子点与尿酸分子界面间的转移电荷量为0.344 e.基于理论计算结果,文中以能量捕获或电信号为切入点,对使用ZnO量子点直接检测尿酸分子的传感器进行了初步探讨.
锑烯是一种新兴的具有多种新奇特性的二维材料。本文基于密度泛函理论的第一性原理方法,主要研究了Li、Na、K原子在锑烯表面的吸附和扩散行为。结果显示,Li、Na、K原子在锑烯表面吸附时,具有较大的吸附能,分别为-2.36 e V,-1.84 e V和-1.60 e V。通过引入垂直于衬底指向吸附原子的外电场,发现它们的吸附能和转移电荷都随着外加电场的增加而增加,其中对K原子的吸附能和转移电荷影响最显著。采用Climbing Image-Nudged Elastic Band(CI-NEB)的方法研究得出Li、Na和K在锑烯表面的扩散行为都具有较小的扩散势垒,其中Li为0.09e V,Na为0.08 e V,而K仅有0.04 e V,这有利于碱金属原子在锑烯表面的扩散。研究结果为进一步了解锑烯的性质和应用推广提供了基础理论支持。
We predicted two stable two-dimensional materials of carbon and bismuth elements,namely BiC and Bi_(2)C monolayers.The stabilities of two monolayers were examined by cohesive energy,Born criteria,first-principle MD simulations and phonon spectra,respectively.By including the spin-orbit coupling effects,the BiC monolayer is a metal and the Bi_(2)C monolayer possesses a narrow direct(indirect)band gap of 0.403(0.126)eV under the HSE06(GGA-PBE)functional.For the adsorption of CO_(2)molecules,the BiC and Bi_(2)C monolayers have three stable adsorption sites C2,T3 and T4 with the adsorption energies as-0.57,-0.51 and-0.81 eV,and the activation ability on the adsorption as T4>T3>C2.These consequences make the BiC and Bi_(2)C monolayers to be promising adsorbents to capture CO_(2)gas,the Bi_(2)C monolayer to be well photovoltaics and optoelectronics material,and the BiC monolayer to be ideal battery and electronics materials,respectively.