The generalized two-dimensional correlation analysis based on time-resolved light scattering patterns (2D TRLS) has been employed to study the phase separation process of an epoxy-amine-polyethersulfone blend in which the secondary phase separation takes place. The results of the 2D TRLS provided more detailed information that was not readily observed in the 1D TRLS patterns. (i) During the first process of phase separation, the sequential order of coarsening in size of the domains among the larger and smaller ones has been reversed between the diffusion regime and the hydrodynamic regime. (ii) The change of the larger domains in size, due to the hydrodynamic flow in the late stage of the first phase separation process, keeps on taking place earlier than that of the new domains appeared in the secondary phase separation process. (iii) During the secondary phase separation process the size growth of the smaller domains takes place earlier than that of the larger ones, probably due to the assumption that the coarsening mode could decrease the interface tension more quickly.
To consider the reliability and performance of electronic devices based on polyimide derivatives, dynamic water sorption and diffusion behavior in a polyimide derivative: poly(4'4 oxydiphenylene pyromellitimide) (PMDA-ODA)/silica nanocomposite was investigated by two-dimensional ATR-FTIR spectroscopy, by which three states of water molecules owning different H-bonding strength were distinguished. The amounts and strength of H-bonding also played a significant role in determining the diffusion rate of the different states of water molecules. The type of aggregated water molecules which also formed H-bonding with silicic acid (residues) or polyimide system was the last one diffusing to the polymer side in contact with the ATR crystal element because the polymeric matrix blocked their diffusion to a great extent. The diffusion coefficient was also estimated to gain the information of the dynamic diffusion behavior.