In this paper, we establish the boundedness of commutators generated by the multilinear Calderon- Zygmud type singular integrals and Lipschitz functions on the Triebel-Lizorkin space and Lipschitz spaces.
The present paper first obtains Strichartz estimates for parabolic equations with nonnegative elliptic operators of order 2m by using both the abstract Strichartz estimates of Keel-Tao and the Hardy-LittlewoodSobolev inequality. Some conclusions can be viewed as the improvements of the previously known ones. Furthermore, an endpoint homogeneous Strichartz estimates on BMOx(Rn) and a parabolic homogeneous Strichartz estimate are proved. Meanwhile, the Strichartz estimates to the Sobolev spaces and Besov spaces are generalized. Secondly, the local well-posedness and small global well-posedness of the Cauchy problem for the semilinear parabolic equations with elliptic operators of order 2m, which has a potential V(t, x) satisfying appropriate integrable conditions, are established. Finally, the local and global existence and uniqueness of regular solutions in spatial variables for the higher order elliptic Navier-Stokes system with initial data in Lr(Rn) is proved.