A parallel multichannel format conversion scheme for elastic optical networking based on four wave mixing (FWM) in symmetric highly nonlinear fiber loop (S-HNLF-L) is proposed and the performance is evaluated and discussed. Parallel four channels format conversion from quadrature phase shift keying (QPSK) to binary phase shift keying (BPSK) signals at 40 Gb/s is theoretically analyzed and simulated. The results are helpful for the format-adaptive elastic optical networks.
We propose a configuration of a wavelength division multiplexing (WDM)-visible light communication (VLC) system using orthogonal frequency division multiplexing (OFDM) modulation and an adaptive Nyquist windowing of the OFDM signal in the receiver. Based on this configuration, we demonstrate a 750-Mb/s WDM-VLC transmission based on RGB light-emitting diode (LED) with a distance of 70 cm. The measured bit error rate (BER) for all channels are under the pre-forwaxd error correction limit of 3,8 × 10-3. The BER performances of all the channels of the proposed WDM-VLC system show considerable improvement compared with those of the system without Nvauist windowing.
We propose a novel scheme for optical frequency-locked multi-carrier generation based on a directly modu- lated laser (DML) and a phase modulator (PM) in cascade through synchronous sinusoidal radio frequency (RF) signal. The optimal operating zone for the cascaded DML and PM scheme is determined via theoreti- cal analysis and numerical simulation. We demonstrate 16 optical subcarriers can be successfully generated based on the cascaded DML and PM scheme in the optimal zone. The generated 16 optical subcarries have frequency spacing of 12.5 GHz and power difference of less than 3 dB. These results agree well with those of the numerical simulation. We also demonstrate intensity modulation and direct detection (IM-DD) based on one of the 16 generated optical subcarriers. After 20-km single-mode fiber-28 (SMF-28) transmission, the bit-error ratio (BER) of 1×10^-9 can be attained for both 3.125- and 12.5-Gb/s bit rates.
We experimentally investigate multigranularity optical subband switching functionality between two superchannels with slight error vector magnitude penalty. One is 4×39 Gb/s polarization-division-multiplexed(PDM) quadrature phase shift keying discrete Fourier transform spread orthogonal frequency division multiplexing(DFT-spread-OFDM) superchannel with 12.5 GHz band spacing. The other is 8×29 Gb/s PDM-16-quadrature amplitude modulation Nyquist pulse shaping superchannel with 6.25 GHz band spacing. To the best of our knowledge, this is the first time that optical switching functionality for individual band between different superchannels with multigranularity is realized.
We propose a joint nonlinear electrical equalization approach in coherent optical discrete-Fourier-transform spread orthogonal-frequency-division-multiplexing (DFT-sprea^-OFDM) systems with polarization divi- sion multiplexing (PDM). This method is based on an adaptive Volterra series expansion for nonlinear distortions of two orthogonal polarizations. The nonlinear electrical equalization is validated through numerical simulation of 100-Gb/s quadrature phase shift keying and 200-Gb/s 16 quadrature amplitude modulation PDM DFT-spread-OFDM systems.
By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km standard single mode fiber (SSMF) transmission in the C- and L-bands with 25-GHz channel spacing. 368 optical channels with bandwidth spacing of 25 GHz are generated from 16 external cavity laser sources. After 160-km SSMF transmission, all tested bit error rate (BER) are under 3.8×10^-3, which can be recovered by 7% FEC threshold. Within each channel, we achieve the spectral efficiency of 6.85 bit/s/Hz in C/L band.