A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a high energy load.The relationship between reflectivity and input energy is examined experimentally with different PCM structures,focus lengths,and medium cell structures.A medium cell with a circulating structure is designed,and its advantage is demonstrated through an experimental comparison with traditional PCM structures.The 30-cm focus lens and 150-cm collimation lens are optimized when the input energy reaches 1010 mJ at 10-Hz repetition rate.Therefore,a reflectivity of 84.7% and a higher energy load using the circulating two-cell structure are achieved.
This paper proposes a method for measuring the stimulated Brillouin scattering (SBS) threshold based on waveform variation of SBS optical limiting. The output waveforms for different pump power densities are numerically simulated, and validated in the Nd:YAG seed-injected laser system. The results indicate that SBS does not take place in the case of a low pump power density and thus the output power scales up linearly with pump power. Once the pump power density exceeds the SBS threshold, SBS takes place and thereby the energies are transferred from pump to Stokes. As a result, a small shoulder appears in the trailing edge of the output waveform, which provides another method to determine the SBS threshold.
This paper investigates the effect of beam divergence angle on output waveform based on stimulated Brillouin scattering optical limiting.Output waveforms in the case of different pump divergence angles are numerically simulated,and validated in a Nd:YAG seed-injected laser system.The results indicate that a small pump divergence angle can lead to good interaction between pump and Stokes,and a platform can be easily realized in the transmitted waveform.In contrast,a peak followed by the platform appears when the divergence angle becomes large.