To solve the problems of shaving and reusing information in the information system, a rules-based ontology constructing approach from object-relational databases is proposed. A 3-tuple ontology constructing model is proposed first. Then, four types of ontology constructing rules including class, property, property characteristics, and property restrictions ave formalized according to the model. Experiment results described in Web ontology language prove that our proposed approach is feasible for applying in the semantic objects project of semantic computing laboratory in UC Irvine. Our approach reduces about twenty percent constructing time compared with the ontology construction from relational databases.
介绍了一种自适应逼近数据实质维的GHA神经网络学习算法。基于主元子空间分解的思想,给出了基于该算法的分类器刻画方法,对其中的刻画参数给出了详细的界定。该分类器采用监督学习机制进行训练,可以自动学习输入的主元特征子空间维数。在入侵检测领域,利用KDD CUP 1999数据集对该方法进行了仿真。采用正常连接数据训练GHA异常检测分类器,利用拒绝服务攻击数据进行了误用检测训练。并将测试结果与其他入侵检测方法进行了比较。