Consider a continuous-time renewal risk model, in which every main claim induces a delayed by-claim. Assume that the main claim sizes and the inter-arrival times form a sequence of identically distributed random pairs, with each pair obeying a dependence structure, and so do the by-claim sizes and the delay times. Supposing that the main claim sizes with by-claim sizes form a sequence of dependent random variables with dominatedly varying tails, asymptotic estimates for the ruin probability of the surplus process are investigated, by establishing a weakly asymptotic formula, as the initial surplus tends to infinity.