您的位置: 专家智库 > 资助详情>国家自然科学基金(10971156)

国家自然科学基金(10971156)

作品数:5 被引量:10H指数:2
相关作者:王中华涂振汉更多>>
相关机构:武汉大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 5篇理学
  • 1篇自动化与计算...

主题

  • 2篇PICARD
  • 2篇P
  • 1篇多复变
  • 1篇映射
  • 1篇正规族
  • 1篇值分布
  • 1篇值分布理论
  • 1篇全纯
  • 1篇全纯映射
  • 1篇复变
  • 1篇PROBLE...
  • 1篇PROPER
  • 1篇SINGUL...
  • 1篇THEORE...
  • 1篇TYPE
  • 1篇UNIQUE...
  • 1篇VALUE
  • 1篇FACTOR...
  • 1篇HOLOMO...
  • 1篇IRREDU...

机构

  • 1篇武汉大学

作者

  • 1篇涂振汉
  • 1篇王中华

传媒

  • 2篇Acta M...
  • 1篇数学年刊(A...
  • 1篇Chines...
  • 1篇Scienc...

年份

  • 1篇2013
  • 1篇2011
  • 3篇2010
5 条 记 录,以下是 1-5
排序方式:
ON THE EXISTENCE OF SINGULAR DIRECTIONS OF HOLOMORPHIC MAPS FROM THE UNIT DISK INTO P^n(C)被引量:3
2010年
This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.
涂振汉张莎莎
多复变全纯映射正规族关于连续移动超平面的一个充要条件
2011年
证明了从C^n的一个区域到P^N(C)中的多复变全纯映射族为正规族的一个充要条件.这个充要条件与P^N(C)中的逐点处于一般位置的连续移动超平面族有关.证明的主要方法来自于微分方程.
王中华涂振汉
关键词:全纯映射正规族值分布理论
Montel-Type Theorems in Several Complex Variables with Continuously Moving Targets被引量:1
2010年
The authors introduce a new idea related to Montel-type theorems in higher dimension and prove some Montel-type criteria for normal families of holomorphic mappings and normal holomorphic mappings of several complex variables into PN(C) for continuously moving hyperplanes in pointwise general position. The main results are also true for continuously moving hypersurfaces in pointwise general position. Examples are given to show the sharpness of the results.
Zhenhan TU Shasha ZHANG
UNIQUENESS PROBLEM FOR MEROMORPHIC MAPPINGS IN SEVERAL COMPLEX VARIABLES INTO P^N(C) WITH TRUNCATED MULTIPLICITIES被引量:4
2013年
This paper proves some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space p^N(C) with truncated multiplicities, and our results improve some earlier work.
涂振汉王中华
Factorization of proper holomorphic maps on irreducible bounded symmetric domains of rank≥2被引量:2
2010年
We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.
MOK NgaimingNG Sui-Chung
关键词:PROPERHOLOMORPHICDISCRIMINANTG-STRUCTURE
共1页<1>
聚类工具0