This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(α(α))α∈Z^s is an infinitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M^-n =0, with m = detM. Some properties about the solutions of refinement equations axe obtained.
In this paper it is proved that L p solutions of a refinement equation exist if and only if the corresponding subdivision scheme with suitable initial function converges in L p without any assumption on the stability of the solutions of the refinement equation.A characterization for convergence of subdivision scheme is also given in terms of the refinement mask.Thus a complete answer to the relation between the existence of L p solutions of the refinement equation and the convergence of the corresponding subdivision schemes is given.
The purpose of this paper is to investigate the refinement equations of the formwhere the vector of functions = (1, … ,r)T is in (LP(R8))T,1 ≤ p ≤∞, α(α),α ∈ Z5, is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s x a integer matrix such that limn→ ∞ M-n = 0. In order to solve the refinement equation mentioned above, we start with a vector of compactly supported functions (0 ∈ (LP(R8))r and use the iteration schemes fn := Qan0,n = 1,2,…, where Qa is the linear operator defined on (Lp(R8))r given byThis iteration scheme is called a subdivision scheme or cascade algorithm. In this paper, we characterize the Lp-convergence of subdivision schemes in terms of the p-norm joint spectral radius of a finite collection of some linear operators determined by the sequence a and the set B restricted to a certain invariant subspace, where the set B is a complete set of representatives of the distinct cosets of the quotient group Z8/MZ8 containing 0.
Shifts-invariant spaces in L 1(R) are investigated. First,based on a study of the system of linearly difference operators,the method of constructing generators with linearly independent shifts is provided. Then the characterizations of the closed shift-invariant subspaces in L 1(R) are given in terms of such generators and the local basis of shift-invariant subspaces.
Wu ZhengchangDept. of Math.,Zhejiang Univ.,Hangzhou 310027,China.