In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.
In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,we get the solutions of R m(m〉0) Riemann boundary value problems for regular functions.Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions,we obtain the solutions of R m(m〉0) Riemann boundary value problems for harmonic functions and bi-harmonic functions.
In this article, a polyharmonic Neumann function in a sector with angle π n (n N) is studied by convolution. Especially, the outward normal derivatives at three corner points are defined properly. We give the recursive expressions for the polyharmonic Neumann function, obtaining the solution and the condition of solvability for the related polyharmonic Neumann problem.
This paper discusses the stability of the welding problems under different materials with same shearing modulus. Using the stability of Cauchy type integral while the smooth perturbation for the integral curve and Sobolev perturbation for the kernel density happening, the stability of complex stress functions are studied and errors of stress and displacement are given.
In this article, by using the stability of Cauchy type integral when the smooth perturbation for integral curve and the Sobolev type perturbation for kernel density happen, we discuss the stability of the second fundamental problem in plane elasticity when the smooth perturbation for the boundary of the elastic domain (unit disk) and the Sobolev type perturbation for the displacement happen. And the error estimate of the displacement between the second fundamental problem and its perturbed problem is obtained.