Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
Based on the three-dimensional Liu system with a nonlinear term of square, this paper appends a state variable to the system, and further adds a driving signal of the sine signal to construct a novel 4-demensional nonautonomous hyperchaotic Liu system. The appended variable is formed by the product of the nonlinear quadratic term of the original state variables and the driving signal. Through adjusting the frequency of the driving signal, the system can be controlled to show some different dynamic behaviors. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the novel systems are analyzed. Furthermore, the corresponding hardware circuits are implemented. Both the experimental results and the simulation results confirm that the method is feasible. The method, which adjusts the frequency of the input sine signal to control the system to show different dynamic behaviors, can make the dynamic property of the system become more complex, but easier to be controlled accurately as well.