您的位置: 专家智库 > >

国家自然科学基金(s10871146)

作品数:2 被引量:2H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学机械工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学
  • 1篇机械工程

主题

  • 1篇QUADRA...
  • 1篇ADMISS...
  • 1篇ESTIMA...
  • 1篇LOSS
  • 1篇MODERA...
  • 1篇MULTIV...
  • 1篇SUM
  • 1篇CONVEX
  • 1篇SELF-N...
  • 1篇INCREM...

传媒

  • 2篇Scienc...

年份

  • 1篇2012
  • 1篇2010
2 条 记 录,以下是 1-2
排序方式:
Self-normalized moderate deviations for independent random variables被引量:2
2012年
Let X1,X2,... be a sequence of independent random variables (r.v.s) belonging to the domain of attraction of a normal or stable law. In this paper, we study moderate deviations for the self-normalized sum n X ∑^n_i=1Xi/Vm,p ,where Vn,p (∑^n_i=1|Xi|p)^1/p (P 〉 1).Applications to the self-normalized law of the iteratedlogarithm, Studentized increments of partial sums, t-statistic, and weighted sum of independent and identically distributed (i.i.d.) r.v.s are considered.
JING BingYiLIANG HanYingZHOU Wang
关键词:INCREMENT
Admissibilities of linear estimator in a class of linear models with a multivariate t error variable
2010年
This paper discusses admissibilities of estimators in a class of linear models,which include the following common models:the univariate and multivariate linear models,the growth curve model,the extended growth curve model,the seemingly unrelated regression equations,the variance components model,and so on.It is proved that admissible estimators of functions of the regression coefficient β in the class of linear models with multivariate t error terms,called as Model II,are also ones in the case that error terms have multivariate normal distribution under a strictly convex loss function or a matrix loss function.It is also proved under Model II that the usual estimators of β are admissible for p 2 with a quadratic loss function,and are admissible for any p with a matrix loss function,where p is the dimension of β.
YANG GuoQing 1 & WU QiGuang 2 1 Department of Mathematics,Tongji University,Shanghai 200092,China
关键词:MULTIVARIATECONVEXLOSSQUADRATICLOSSLOSSADMISSIBLEESTIMATOR
共1页<1>
聚类工具0