An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of cyclohexanone oxime from cyclohexanone, ammonia and hydrogen peroxide was carried out in a batch plant. Cyclohexane was used as the solvent in the three-phase reaction system. The influences of essential process parameters on ammoximation were investigated. Under the reaction conditions as catalyst content of 2.5% (by mass); H 2 O 2 /yclohexanone molar ratio of 1.10; NH 3 /cyclohexanone molar ratio of 2.20; reaction temperature of 343 K; reaction time of 5 h, high conversion of cyclohexanone and selectivity to oxime (both>99%) were obtained. Thus, the three-phase ammoximation process showed equal catalytic activity as TS-1 but much more convenient and simpler for the separation of catalyst in comparison to the industrial two-phase system with t-butanol used as solvent.
The size of initial bubbles is an important factor to the developed bubble size distribution in a gas-liquid contactor. A liquid cross-flow over a sparger can produce smaller bubbles, and hereby enhance the performance of contactor. A one stage model by balancing the forces acting on a growing bubble was developed to describe the formation of the bubble from an orifice exposed to liquid cross-flow. The prediction with this model agrees with the experimental data available in the literatures, and show that orifice size strongly affects the bubble size. It is showed that the shear-lift force, inertia force, surface tension force and buoyancy force are major forces, and a simplified mathematical model was developed, and the detachment bubble diameter can be predicted with accuracy of <±21%.