The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO2 and Al2O3 with lime were soluble in dilute hydrochloric acid. The results show that the pozzolanic reaction of active SiO2 and Al2O3 of coal ashes follows apparent first-order kinetics. The reaction rate constant of FBC ashes is greater than that of PC ashes, while the activation energy of the former is lower than that of the latter. It is confirmed that the pozzolanic activity of fluidized bed combustion(FBC) ashes is significantly higher than that of PC ashes, and the reaction barrier of the former is lower than that of the latter, because the microstructures of FBC ashes, such as mineralogical composition, morphology and polymerization degree of [SiO4] and [AlO6] are more favorable to the pozzolanic activity development than those of PC ashes.
This paper describes a new method to design a laser mirror with high reflectivity, wide reflection bandwidth and high laser- induced damage threshold. The mirror is constructed by three materials of HfO/TiO2/SiO2 based on electric field and temperature field distribution characteristics of all-dielectric laser high reflector. TiO/SiO2 stacks act as the high reflector (HR) and broaden the reflection bandwidth, while HfO2/SiO2 stacks are used for increasing the laser resistance. The HfO/ TiO/SiO2 laser mirror with 34 layers is fabricated by a novel remote plasma sputtering deposition. The damage threshold of zero damage probability for the new mirror is up to 39.6 J/cm^2 (1064 nm, 12 ns). The possible laser damage mechanism of the mirror is discussed.
A novel scheme is proposed, in which the aberrations in the off-axis holographic lenses used as demultiplexers are reduced to a low enough level for relatively small channel spacing. The scheme includes optimizing the recording and reconstruction geometries and collimating the reconstruction wave with a gradient-index lens. A demultiplexer operated in the 1 550-nm band with 5-nm channel spacing and -∞-dB crosstalk is obtained using the scheme. The channel spacing can be decreased to 2 nm by etching the cladding of the output fibers to a smaller size.
The performance of broadband polarizing beam splitters(PBSs) is sensitive to the incident angle.By taking account of the spectrum of the laser source and using the needle optimization method,a large acceptance angle PBS for laser-based displays is designed.The average degrees of polarization in transmission and reflection can reach 0.989 and 0.980 for an acceptance angle of 13.6?in air using two materials,while better results of 0.993 and 0.989 for an acceptance angle of 14.8?in air are attained when three common materials are used.Both designs consist of 40 layers.
Sputtering deposition coatings offer significant advantages on electron beam (EB) deposition, including high packing density, environmental stability and extremely low losses. But the inherent high compressive stress affects its application in high power laser system. This paper describes the technical feasibility of high damage threshold laser mirrors deposited by a novel remote plasma sputtering technique. This technique is based on generating intensive plasma remotely from the target and then magnetically steering the plasma to the target to realize the full uniform sputtering. The pseudo-independence between target voltage and target current provides us very flexible parameters tuning, especially for the films stress control. Deposition conditions are optimized to yield fully oxidized and low compressive stress single layer HfO2 and SiO2. The high damage threshold of 43.8 J/cm2 for HfO2/ SiO2 laser mirrors at 1064 nm is obtained. For the first time the remote plasma sputtering is successfully applied in depositing laser mirrors with high performance.
A two-dimensional (2D) distributed feedback (DFB) structure is fabricated on dye-doped sol-gel derived hybrid zirconia films by soft lithography. The Q-switched Nd:YAG laser ()~ = 532 nm) is used to pump these structures. The lasing emissions of the gain medium doped with Rhodamine 6G (Rh6G) in two perpendicular directions are shown, and the threshold pump energy is measured.