运用NETZSCH STA 409PC同步热分析仪针对新疆克拉玛依油田红浅扩大试验区中的稠油样品在氧化过程中高岭石的影响,分析测试。研究结果表明,高岭石的加入影响了稠油的低温及高温氧化反应,使稠油的低温氧化DTA峰值温度从437.6℃增加为455.4℃;高温氧化DTA峰面积显著减小,峰值从607.8℃减小为597.8℃;高岭石含量的增加,有利于降低稠油的低温,高温氧化的DTA峰值温度。随着升温速率的增加,混合样品中稠油的低温,高温氧化及高岭石脱羟基反应呈现为动力学过程。研究结果有助于深入认识原油的氧化过程,对提高采收率和推动稠油油藏的有效开发具有重要的意义。
The single phase La2(CO3)3·3.4H2 O was synthesized by hydrothermal method. The thermal decomposition and intermediates and final solid products of La2(CO3)3·3.4H2O from 30 to 1000 °C were characterized by XRD, FTIR and DTA-TG. The kinetics of dehydration of La2(CO3)3·3.4H2O in the temperature range of 30-366 °C was investigated under non-isothermal conditions. Flynn-Wall-Ozawa and Friedman isoconversion methods were used to calculate the activation energy and analyze the reaction steps; multivariate non-linear regression program was applied to determine the most probable mechanism and the kinetic parameters. The results show that the thermal dehydration of La2(CO3)3·3.4H2O is a kind of three-step competitive reaction, and controlled by an n-order initial reaction followed by n-order competitive reaction(FnFnFn model). The activation energy matching with the most probable model is close to value obtained by Friedman method. The fitting curves match the original TG-DTG curves very well.