根据GABLS(Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study)的第2个个例在GRAPES(Global and Regional Assimilation and PrEdiction System)单柱模式中构造了一个试验,用于检验规定的下垫面温度强迫条件下边界层过程的昼夜循环模拟能力。然后,将模拟结果与观测和大涡模拟结果进行了比较。结果表明,在规定的下垫面温度强迫下,GRAPES模拟的2m温度基本合理。然而,对于稳定条件(夜间),GRAPES模拟的向下的感热通量比观测的大,过估10m风速和摩擦速度,过估稳定边界层高度;对于不稳定条件(白天),GRAPES模拟的向上的感热通量比观测的小,低估不稳定边界层高度,低层位温偏冷。随后的敏感试验表明,减小边界层方案中的动量和热量的背景扩散值后,GRAPES模拟的稳定条件下的10m风速和摩擦速度,以及对流边界层的风和温度的廓线更接近大涡模拟。
根据GCSS WG4(Global Energy and Water Cycle Experiment Cloud System Study Working Group 4)第3次个例模拟的观测数据,为GRAPES(Global and Regional Assimilation and Prediction Enhanced System)设计了一个可用于检验其整套物理参数化过程对夏季中纬度陆地天气过程模拟的单柱模式试验,并利用该试验考察了不同复杂度的两种陆面过程(CoLM和SLAB)对温、湿度和降水模拟的影响。整个观测时段的模拟表明,模拟的降水与观测的量级一致,位温和水汽混合比没有明显偏离观测,这说明本试验的构造是合理的。考虑到模式系统误差对长期积分结果的影响,随后选取了4个降水子时段分别进行积分。结果表明,使用CoLM方案模拟得到的累积降水量均大于使用SLAB方案的,但使用CoLM方案时出现虚假降水的概率较大。由于区域平均的初始热动力廓线比实际降水发生地区偏干,使用两个方案的模拟均对子时段3的第1个降水事件延迟24h左右,这对其在子时段3的相关系数都很小有贡献。时间平均的位温和水汽混合比误差分析表明,使用CoLM模拟的子时段1和2的对流层低层偏冷、偏湿,而其他情况下为偏暖、偏干。对流层低层位温的误差与地表气温的误差一致。此外,还发现使用CoLM模拟得到的感热通量偏小,潜热通量偏大,而使用SLAB模拟得到感热通量偏大,潜热通量偏小。对流层中高层,子时段1和4为偏冷、偏湿,对应降水偏少(使用CoLM的模拟在子时段1的降水偏多归因于虚假降水);子时段2,使用CoLM的模拟为偏暖、偏干,对应降水偏多,使用SLAB的模拟为偏冷、偏干,对应降水偏少;子时段3,使用两个陆面方案的模拟均为偏冷、偏干,对应降水偏多。