事件检测作为事件抽取的一个子任务,是当前信息抽取的研究热点之一。它在构建知识图谱、问答系统的意图识别和阅读理解等应用中有着重要的作用。与英文字母不同,中文中的字在很多场合作为单字词具有特定的语义信息,且中文词语内部也存在特定的结构形式。根据中文的这一特点,文中提出了一种基于字词联合表示的图卷积模型JRCW-GCN(Joint Representation of Characters and Words by Graph Convolution Neural Network),用于中文事件检测。JRCW-GCN首先通过最新的BERT预训练语言模型以及Transformer模型分别编码字和词的语义信息,然后利用词和字之间的关系构建对应的边,最后使用图卷积模型同时融合字词级别的语义信息进行事件句中触发词的检测。在ACE2005中文语料库上的实验结果表明,JRCW-GCN的性能明显优于目前性能最好的基准模型。
在自然语言处理领域,谷歌提出Transformer模型之后,以生成式预训练模型(Generative Pre-Training,GPT)和深度双向预训练语言模型(Bidirectional Encoder Representat ions from Transformers,BERT)等为代表的一些基于Transformer的预训练语言模型(Transformer-based Pre-trained Language Models,TPLM)相继被提出,在大部分自然语言处理任务上取得很好的效果。TPLM使用自监督学习方法学习来自大量文本数据的通用语言表示,并将这些知识转移到下游任务中,为其提供了背景知识,避免了重新开始训练新任务模型的情况。笔者主要研究了基于Transformer的预训练语言模型与基于TPLM的“预训练+微调”的自然语言处理预训练新技术模式。首先,介绍预训练模型的发展背景;其次,解释各种有关TPLM的核心概念,如预训练、预训练方法、预训练任务、自监督学习与迁移学习等;再次,简要介绍相关TPLM模型与目前的进展;最后,提出改进TPLM的方法并总结。