In order to study the welding process,microstructure and properties of Al-Mg-Mn-Sc-Zr alloy,comparative methods of friction stir welding(FSW) and tungsten inert gas(TIG) were applied to the two conditions of this alloy,namely hot rolled plate and cold rolled-annealed plate.The relationships between microstructures and properties of the welded joints were investigated by means of optical microscopy and transmission electron microscopy.Compared with the base metal,the strength of FSW and TIG welded joints decreased,and the FSW welding coefficients were higher than the TIG welding coefficients.The loss of substructure strengthening and a very little loss of precipitation strengthening of Al3(Sc,Zr) cause the decreased strength of FSW welded joint.But for the TIG welded joint,the disappearance of both the strain hardening and most precipitation strengthening effect of Al3(Sc,Zr) particles contributed to its softening.At the same time,the grains in weld nugget zone of FSW welded joints were finer than those in the molten zone of TIG welded joints.
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.