朱焱
- 作品数:59 被引量:182H指数:8
- 供职机构:西南交通大学更多>>
- 发文基金:四川省科技计划项目中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术交通运输工程电子电信自然科学总论更多>>
- 应用模糊分析层次法可靠评测Web资源质量被引量:8
- 2009年
- 建立了一个Web资源质量评测系统。该系统将AHP算法与模糊逻辑相结合,以解决Web资源质量评测中模糊和不确定问题。另外,模糊AHP算法中集成了评测置信度和风险指标,以增强评测精度和提高Web资源质量评测的可靠性。
- 朱焱
- 基于深度强化学习的异常学术引用检测
- 2024年
- 现有高效识别异常引用的算法存在无法充分利用已知的标签信息或伪标签导致训练过程恶化等问题。为此提出一种融合深度强化学习和图神经网络技术的异常检测方法RACD。异常检测智能体可有效提取作者节点的异常引用特征;异常感知环境建模驱动智能体充分学习已标注数据中的异常特点,发现未标注数据中的潜在异常。通过智能体与环境的不断交互,获得最优的引用异常检测策略。在真实数据集上进行实验,其结果表明,该方法可有效检测异常学术引用。
- 王晓菲朱焱
- 关键词:图嵌入
- 通用阵列逻辑GAL器件的分析研究
- 1991年
- 本文分析讨论了当今最新PLD类产品——通用阵列逻辑GAL器件的设计原理,器件的结构,并对其内部编程机理作了初步探讨。
- 朱焱
- 关键词:GAL器件
- 基于差分隐私保护和近邻优化的微博僵尸用户检测
- 2022年
- 僵尸用户导致的数据造假现象严重影响了微博的健康发展。针对采用基于密度的DPC算法进行僵尸用户检测时存在泄露正常用户隐私信息,以及在密度分布不均匀的微博数据中检测结果不理想的问题,提出一种基于差分隐私技术和近邻优化的僵尸用户检测方法。该方法将满足差分隐私的Laplace噪声添加至检测过程中,以实现基于隐私保护的僵尸用户检测。并通过引入反向k近邻的概念重新定义样本密度,从而更准确地反映样本点的局部信息,提高在非均匀分布的数据中僵尸用户检测的准确率。实验结果表明,该方法在实现正常用户隐私保护的同时,僵尸用户检测的准确率提高约4百分点。
- 李明娟朱焱李春平
- 关键词:隐私泄露
- 构建预训练动态图神经网络预测学术合作行为消失
- 2024年
- 现有链接消失问题研究工作一部分只停留在发现和分析链接消失的原因上,一部分仅使用静态网络表示进行预测,很少从网络动态演化的角度分析链接消失预测问题。针对以上研究现状,提出一种预训练动态图神经网络学术合作行为消失预测模型PreDGN(Pre-trained Dynamic Graph neural Network)。PreDGN首先通过动态图生成预训练任务捕捉动态网络的时间信息,同时利用时序模体构造的边特征补充网络的拓扑信息;其次,结合基于时间编码的注意力节点嵌入,能够更精准地学习节点的表征。经过预训练的模型学习了动态图的历史信息,而且可以在特定的学术合作行为消失预测任务中进行微调。使用公开学术合作数据集HepTh中不同时间跨度、不同数据规模数据进行实验的结果表明,在1996、1997、94—96和97—99子数据集上,相较于次优的动态图神经网络方法(DyRep),所提模型的曲线下面积(AUC)指标分别提高了10.47、8.16、13.41和3.27个百分点,平均精度(AP)指标分别提高了5.87、2.15、8.26和3.01个百分点。
- 杜郁朱焱
- 关键词:动态图
- 基于DPCNN和多学习模式损失的富上下文反讽识别
- 2023年
- 反讽作为一种层次丰富且复杂的语言表达方式,广泛存在于人们的日常表达和社交平台中。在电子商务、事件话题分析等方面,准确检测评论文本是否具有反讽意图对判断评论者情感倾向、对评论主体的好恶至关重要。研究针对会话上下文、用户上下文、主题上下文这3类反讽上下文语境,构建上下文语境丰富的反讽检测模型。针对传统浅层CNN难以捕获句子远距离依赖的问题,所提模型引入DPCNN架构捕获语句远程关联信息,并融合双向注意力机制学习会话上下文中的不协调信息。考虑到现实的数据样本中反讽类型数量少、反讽表达层次不均衡,还提出一种多学习模式的非对称损失函数,来解决样本类别不平衡、难易样本优先学习的问题。通过在3个公开反讽数据集上进行验证实验,结果表明所提模型在ACC、F1和AUC指标上均优于基准模型,最高超出2.5%。消融实验证明所提模型各个模块以及多学习模式损失函数均能提升反讽检测的性能。
- 刘畅朱焱
- 基于话题注意力和依存句法信息的文本立场分析
- 2023年
- 文本立场分析旨在从用户发表的文本中推测其对特定话题的看法,如支持、反对、中立等态度。传统的立场分析研究往往采用卷积神经网络或者长短时记忆网络等深度学习模型学习文本的基本语义信息,忽略了文本蕴含的句法结构信息。针对这一问题,文中设计实现了基于话题注意力和依存句法的文本立场检测模型——AT-BiLSTM-GAT,在BiLSTM提取的文本上下文信息基础上,采用GAT进一步学习文本语言学层次的依存句法信息。同时设计实现一种融合上下文语义信息的话题注意力机制,采用缩放点积注意力学习立场文本中与话题相关的重要内容,在公开数据集上的对比实验证明了AT-BiLSTM-GAT模型的高效性。最后,针对立场分析研究数据集存在规模较小的问题,设计实现了一种基于WordNet同义词库与WebVectors词嵌入模型的同义词替换数据增强方案WWDA,保证了同义词替换过程的词性正确性和语义相似性,通过实验证明其可以生成更多高质量样本,提升模型的检测性能。
- 康书铭朱焱
- 关键词:立场分析
- 基于局部扩展社区发现的学术异常引用群体检测
- 2024年
- 学术社交网络中的某些学者可能组成异常引用群体,相互之间过度引用彼此的文章以谋取利益。现有的异常群体检测算法大多将社区检测与节点表示学习分离,导致最终异常群体检测性能受限。为此,提出一种基于局部扩展社区发现的异常引用群体检测(GADL)算法。所提算法利用论文研究领域、标题内容等语义信息提取作者异常引用特征;定义基于节点转移相似度、节点社区隶属度、引用异常度和广度优先遍历(BFS)深度的扩展度量函数;结合异常社区发现和异常节点检测,在统一框架下对二者联合优化,可获得最优的异常检测性能。在ACM、DBLP1和DBLP2数据集上,相较于ALP算法,所提算法分别提高了6.07%、5.35%和3.38%。在真实数据集上的实验结果表明,所提算法可有效地检测异常学术引用。
- 林欣蕊王晓菲朱焱
- 基于多目标粒子群优化的属性网络局部社区检测算法
- 2023年
- 社区结构是复杂网络中的重要特征,局部社区检测的目标是查询出包含一组种子节点的社区子图。传统的局部社区检测算法通常利用网络的拓扑结构进行社区查询,而忽略了网络中丰富的节点属性信息。针对现实中广泛存在的属性网络,提出了一种基于多目标粒子群优化的属性网络局部社区检测算法。首先根据节点与其多阶邻居之间的属性相似度构造属性关系边,并根据模体结构获取网络中的高阶信息得到拓扑关系边,然后基于种子节点使用随机游走算法对两种关系边采样得到备选节点集。在此基础上,通过多目标粒子群优化算法对备选节点集进行迭代筛选,得到拓扑结构紧密和节点属性同质的社区结构。在真实数据集上的实验结果表明,所提方法有效提升了局部社区检测的质量。
- 周志强朱焱
- 关键词:多目标粒子群优化信息熵
- 基于Bagging-SVM集成分类器的网页作弊检测
- 2015年
- 网页作弊不仅造成信息检索质量下降,而且给互联网的安全也带来了极大的挑战。提出了一种基于Bagging-SVM集成分类器的网页作弊检测方法。在预处理阶段,首先采用K-means方法解决数据集的不平衡问题,然后采用CFS特征选择方法筛选出最优特征子集,最后对特征子集进行信息熵离散化处理。在分类器训练阶段,通过Bagging方法构建多个训练集并分别对每个训练集进行SVM学习来产生弱分类器。在检测阶段,通过多个弱分类器投票决定测试样本所属类别。在数据集WEBSPAM-UK2006上的实验结果表明,在使用特征数量较少的情况下,本检测方法可以获得非常好的检测效果。
- 唐寿洪朱焱杨凡
- 关键词:集成分类器信息熵弱分类器