Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spa- tial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. Conclusion The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.