2025年1月11日
星期六
|
欢迎来到海南省图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
吴德林
作品数:
1
被引量:1
H指数:1
供职机构:
甘肃工业职业技术学院
更多>>
相关领域:
理学
更多>>
合作作者
杨士俊
杭州师范大学数学系
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
理学
主题
1篇
多项式
1篇
正交多项式
1篇
极小值
1篇
S-
机构
1篇
甘肃工业职业...
1篇
杭州师范大学
作者
1篇
吴德林
1篇
杨士俊
传媒
1篇
杭州师范大学...
年份
1篇
2002
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
与Gauss-Turán求积公式有关的极小值
被引量:1
2002年
对于给定的权函数 dμ(x) ,若存在 n次首 1多项式 P*n (x) (称为 s-正交多项式 )使下列积分F(s,μ) =∫R[Pn(x) ]2 s+ 2 dμ(x)达到极小 ,Pn(x) =xn +an- 1 xn- 1 +… +a1 x +a0 ,则以多项式 P*n (x)的 n个不同零点 x1 >x2 >… >xn- 1 >xn 作为节点的下列求积公式 (称为 Gauss-Turán求积公式 )∫Rf (x) dμ(x) =∑2 sj=0 ∑nk=1Ajkf ( j) (xk) +E2 s,n(f ) .具有代数精确度 2 (s+1 ) n -1 .但我们对 F (s,μ)所知不多 .Milovanovic′在他最近的一篇文章里提出计算 F(s,μ)的值 .
杨士俊
吴德林
关键词:
极小值
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张