随机森林是机器学习领域中一种常用的分类算法,具有适用范围广且不易过拟合等优点.为了提高随机森林处理多分类问题的能力,提出一种基于空间变换的随机森林算法(space transformation based random forest algorithm,ST-RF).首先,给出一种考虑优先类别的线性判别分析方法(priority class based linear discriminant analysis,PCLDA),利用针对优先类别的投影矩阵对样本进行空间变换,以增强优先类别样本与其他类别样本的区分效果.进而,将PCLDA方法引入随机森林构建过程中,在为每棵决策树随机选择一个优先类别保证随机森林多样性的基础上,利用PCLDA方法创建侧重于不同优先类别的决策树,以提高单棵决策树的分类准确性,从而实现集成模型整体分类性能的有效提升.最后,在10个标准数据集上对ST-RF算法与7种典型随机森林算法进行比较分析,验证所提算法的有效性,并将基于PCLDA的空间变换策略应用到对比算法中,对改进前后的算法性能进行比较分析.实验结果表明:ST-RF算法在处理多分类问题方面具有明显优势,所提出的空间变换策略具有较强的普适性,可以显著提升原算法的分类性能.
有限理性通常指决策者困顿于信息处理能力有限的自然状态,该状态是决策者在实际决策情境中需要面对的常态,因而有必要研究有限理性下的决策问题.多粒度粗糙集在多属性群决策分析领域的优势在于运算效率高,并能结合决策风险,然而多数基于多粒度粗糙集的多属性群决策方法并未考虑有限理性这一实际情境.以q‐RO(q‐Rung Orthopair)模糊集为背景,首先提出乐观与悲观多粒度q‐RO模糊粗糙集模型;接着在并购对象选择的背景下,依据交互式多属性决策(Portuguese of Interactive and Multi‐criteria Decision Making,TODIM)法来处理有限理性下的决策信息,发展多粒度q‐RO模糊粗糙集的最优粒度选择机制并建立相应的多属性群决策方法;最后结合并购对象选择的实际算例验证了所建立模型与方法的有效性.