车载自组织网络(vehicular ad hoc networks,简称VANETs)具有网络间歇连通、节点高速移动及动态的网络拓扑结构等特性,如何有效地实现车辆间的数据传输,成为VANETs的重大挑战.现有研究工作基于历史交通流量或历史延迟预测路段当前交通状况的方法并不可靠.此外,要实现高效的数据路由传输,配置大量路边基础设施节点(deploying roadside unit,简称RSU)是一种可行方案,但通常需要额外开销.基于城市区域长时间拥有大量地上停放车辆这一事实,提出了基于停车骨干网络的数据传输策略PBBD(parking backbone based data delivery),不需要配置任何地面基础设施,而是把地面的停放车辆组成一个虚拟的停车覆盖网络,通过该停车覆盖网实现数据的传输.为此,首先,对于每一条道路,把路边和非路边停放车辆组成一个尽可能长的停车簇,并基于这些停车簇组织城市停车骨干网络.其次,设计基于停车覆盖网络的全新数据传输算法来实现车辆间的有效数据传输.基于真实城市地图和交通数据的模拟实验结果表明,与现有的几种数据传输算法相比,PBBD能够以较低的网络传输开销和较小的传输延迟获得较高的数据传输成功率.
为解决车载自组织网络(Vehicle Ad Hoc Neteorks,VANETs)中基础设施建设的不足以及路侧单元(Roadside Uints,RSUs)通信范围受限的问题,提出停车边缘计算的思想,把拥有大量闲置计算资源的路边停放车辆组织成停车簇,令停车簇充当天然边缘计算节点,在RSUs或边缘计算服务器缺失情况下,及时执行周围移动车辆的卸载任务.分析了任务的完成时间,为最大化成功完成的任务数量,设计改进的SAC(Sampling-and-Classification,SAC)算法实现执行任务的停放车辆选择和资源的分配.基于真实城市道路停车调查的模拟实验结果证明,与其他几种任务调度策略相比,本文所提策略具有较高的任务完成率和卸载率.
延迟容忍移动无线传感器网络DTMSN(Delay Tolerant Mobile Sensor Networks)用于广泛数据收集,传统传感器网络的数据收集方法在DTMSN中并不适用。为此研究了DTMSN的特性,分析了目前常用的几种DTMSN路由算法的特点,并通过详细的仿真实验给出了这几种算法的性能指标,如数据的平均传输成功率,传输能耗、传输延迟及网络寿命。