针对机载单站无源定位系统中的滤波算法存在滤波稳定性差、收敛速度慢、定位精度差等问题,提出一种基于奇异值分解的平方根sigma点卡尔曼滤波算法(Square Root Sigma Point Kalman filter based on Sin-gular Value Decomposition,SVD-SRSPKF)。新算法利用奇异值分解代替Cholesky分解或更新,并使用误差协方差的平方根替代协方差进行滤波,保证滤波算法的数值稳定性。仿真结果表明:SVD-SRSPKF算法比其他同类算法具有更高的收敛速度、定位精度和数值稳定性。