针对独立微电网中储能变流器控制策略进行研究。传统的下垂控制能够实现变流器的输出功率均分,但无法维持各储能单元荷电状态SOC(state of charge)一致。提出一种改进的下垂控制策略,通过引入SOC调节模块,使得能量从SOC较高的单元转移至SOC较低的单元,从而实现各单元的SOC均衡,同时保留了传统下垂控制的功率均分和无需互联线的优点。通过建立系统的双环控制模型,详细分析了SOC调节系数选择对系统性能的影响。最后搭建100 k VA微网实验平台,验证了所提控制策略的有效性。
为了解决基于传统下垂控制的孤岛型低压微网无功分配不合理及公共连接点(point of common coupling,PCC)电压降落严重这2个问题,在详细分析传统下垂控制中无功分配机理的基础上,提出一种改进型无功分配策略。通过引入虚拟感抗使得低压微网线路中有功无功解耦以满足所提策略的实现条件,将分布式电源(distributed generation,DG)单元空载电压幅值与PCC电压幅值的差值引入传统下垂控制中以形成闭环控制。对改进型无功分配策略实现过程中用DG单元接入点电压幅值来代替PCC电压幅值所造成的无功分配相对偏差进行了具体的量化分析。仿真结果表明,该改进型无功分配策略既可以实现无功的合理分配,又可以大大降低PCC电压降落。当空载输出电压幅值设定为155.5 V,2个DG单元共同承担负载的条件下,采用传统无功分配策略时PCC电压幅值为141 V,而采用改进型无功分配策略时PCC电压幅值为152 V。该研究可为微网实际运行控制提供参考。
当多个分布式电源(distributed generation,DG)并联运行时,传统的下垂控制能实现各DG的输出功率均分,但无法维持储能单元荷电状态(state of charge,SOC)一致。提出一种改进的下垂控制策略,通过设计变下垂系数并引入SOC功率指令项,改变DG各单元的下垂曲线,从而使SOC较高的单元输出更多功率,反之SOC较低单元则输出功率较少,最终在空载和负载情况下均可实现各单元的SOC均衡,同时保留传统下垂控制无需互联线的优点。以2台DG并联带载为例,通过求解微分方程得到SOC均衡算式的解析结果,并通过建立控制模型分析SOC变化和参数选择对系统稳态和动态性能的影响,最后搭建100 kVA的DG并联实验平台,验证该文提出控制策略的有效性。