针对度中心性等方法选择种子节点时未考虑节点间传播概率及邻居拓扑连接的影响,提出局部传播中心性LPC(Local Propagation Centrality)的概念。为减少贪心算法时间复杂度高且不可扩展的问题,提出一种新的启发式算法IMLPC(Influence Maximization Algorithm based on LPC)。该算法通过计算每个节点的LPC,依次选择影响力最大的节点。实验结果表明,IMLPC的影响范围和运行时间较现有启发式算法相比有显著提升。在不同数据集下,IMLPC影响范围稳定、可扩展性好。