The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
The polymorph selection during rapid solidification of zinc melt was investigated by molecular dynamics simulation. Several methods including g(r), energy, CNS, basic cluster and visualization were used to analyze the results. The results reveal that the cooling rate has no observable effect on the microstructure as TTc(Tc is the onset temperature of crystallization); and at the first stage of crystallization, although microstructures are different, the morphologies of nucleus are similar, which are composed of HCP and FCC layers; the polymorph selection of cooling rate finally takes place at the second stage of crystallization: at a high cooling rate, the rapid increase of FCC atoms leads to a FCC crystal mixed with less HCP structures; while at a low cooling rate, HCP atoms grow at the expense of FCC atoms, resulting in an almost perfect HCP phase. The results reveal that the cooling rate is one of the important factors for polymorph selection.