Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.
Recently, as the oceanic activities are more and more frequently carried out, marine oil spill accidents bring to enormous harm to the economy and society in China, especially in the Offshore China. Marine oil spill is one kind of serious disasters which severely damages the marine environment. Aiming at the improvement of the emergency response system and response ability for the oil spill, the relative technologies on oil spill response are developed. This paper briefly introduces the developments and achievements of the oil spill numerical models, including the oil spill spreading model, the oil spill transport model, the oil particle model as well as the oil spill weathering model, which provide the theoretic criterions for the future work on the oil spill predicting and response.
The paper introduces the research progress in an emergency decision support system for marine pollution (EDSS) in China seas and elaborates on the possible role of the Neutron Activation Analysis (NAA) method therein. To deal with the increasingly grave situation of offshore pollution, the EDSS for China seas has been researching and developing. Based on the prediction and analysis of the ocean three-dimensional current field, this system makes an inference on the possible path of diffusion and influencing area of marine pollutants and possible location of pollution source, and in combination with the environmentally sensitive information related to the technical integration of GIS, it puts forward the decision, making support for minimizing the hazard caused by pollutants. This system has been operationalized and running for many years on the Bohai and Huanghai seas' Marine Pollutants Prediction and Early-Warning, and it has achieved successful experience for many times in the emergencies of China's coastal pollution accidents. At present, the environmental guarantee system directed against heavy metals and radioactive pollutants is in the experimental stage. As the NAA method is especially applicable to the detection of part of heavy metals and radioactive substances, it is of very important practical value for the new system to realize the monitoring, prediction and early-warning of ocean heavy metals and radioactive pollutants.