In order to achieve higher spectrum efficiency in cognitive radio (CR) systems, a closed-form expression of the optimal decision threshold for soft decision cooperative spectrum sensing based on the minimum total error probability criterion is derived. With the analytical expression of the optimal decision threshold, the impact of different sensing parameters on the threshold value is studied. Theoretical analyses show that the optimal threshold achieves an efficient trade-off between the missed detection probability and the false alarm probability. Simulation results illustrate that the average signal-to-noise ratio (SNR) and the soft combination schemes have a great influence on the optimal threshold value, whereas the number of samples has a weak impact on the optimal threshold value. Furthermore, for the maximal ratio combing (MRC) and the modified deflection coefficient (MDC) schemes, the optimal decision threshold value increases and approaches a corresponding individual limit value while the number of CR users increases. But the number of CR users has a weak influence on the optimal decision threshold for the equal gain combining (EGC) scheme.