裘松良
- 作品数:57 被引量:63H指数:5
- 供职机构:浙江理工大学理学院更多>>
- 发文基金:国家自然科学基金国家重点基础研究发展计划浙江省自然科学基金更多>>
- 相关领域:理学文化科学语言文字一般工业技术更多>>
- 特殊函数m_a(r)的近似凹凸性(英文)
- 2006年
- 揭示了由特殊函数ma(r)和某些初等函数的复合的凹凸性和单调性,并由此获得了ma(r)满足的几个不等式,描述了函数ma(r)的一种近似凹凸性的性质以及m(r)
- 裘松良黄莉莉
- 关键词:单调性凹凸性不等式
- 内球性质和拟共形映射
- 2009年
- 研究了一类具有内球性质区域的几何与分析性质,证明了f(∞)=∞的同胚f:n→n是拟共形映射当且仅当f保持区域的内球性质不变,并获得了该类区域若干有趣的几何性质。
- 褚玉明裘松良
- 关键词:拟共形映射拟圆
- 关于平均值的Alzer猜测的证明(英文)
- 2001年
- 设Mr(x,y)、L(x,y),和I(x,y)依次为x、y的幂平均、对数平均和幺元平均(具体由2-4式定义)。本文证实了由德国数学家H.Alzer于1986年提出而尚未解决的如下猜测:对任意的不同实数x、y>0,都成立不等式Mc(x,y)<[L(x,y)+I(x,y)]/2,其中参数c=(log2)/(1+log2)是最佳的。
- 裘松良
- 关键词:不等式幂平均对数平均
- 提高大学英语教学质量以迎接新经济挑战被引量:5
- 2003年
- 我国加入WTO之后,面对新经济的挑战,面对不断增多的国际经济技术合作与交流,在这种新的形势下,如何抓好高校大学英语教学、提高教学质量,为国家培养急需的高素质人才,是大学英语教学面临的一个重要课题。主要从以下3个方面阐述了提高高校大学英语教学水平的途径:改变教育观念,实现从应试教育到素质教育的全面转变;教学内容应有超前性和新颖性,要体现出时代性;采用多种形式相结合的教学方法与现代化教学手段。
- 刘复岩裘松良
- 关键词:英语教学教学质量应试教育素质教育
- 广义(p,q)-椭圆积分的单调性和凹凸性(英文)被引量:3
- 2018年
- 通过研究由广义(p,q)-三角函数定义的一种新型的广义(p,q)-椭圆积分K_(p,q)、E_(p,q)与某些初等函数的组合的分析性质,获得了K_(p,q)和E_(p,q)的一些单调性和凹凸性。其中,p,q∈(1,∞),r∈(0,1)。
- 焦仁兵裘松良葛耿韬
- 关键词:单调性凹凸性
- 第一类完全椭圆积分之商的一个双向不等式(英文)
- 2018年
- 建立了第一类完全椭圆积分的商K(r)/K(r^(1/2))所满足的一个双向不等式。该不等式给出的上界小于至今已知的所有上界,而下界的证明则简化了最近由Alzer和Richards给出的证明。
- 葛耿韬裘松良焦仁兵
- 关键词:完全椭圆积分单调性上下界不等式
- 关于高校素质教育的几点思考被引量:1
- 2000年
- 准确理解素质教育和正确评价高校素质教育的现状是高校加强素质教育的前提和基础。本文论述了素质教育的内涵 ,指出了当前在理解素质教育上容易引起偏差的 6个方面 ,简要分析了高校素质教育的现状。在此基础上 ,作者讨论了如何加强高校素质教育 ,提出了 8个起重要作用的因素。
- 裘松良
- 关键词:高校素质教育
- Muir平均与第二类完全椭圆积分
- 2000年
- 文献 [7]和 [11]证明了M Vuorinen的猜测 :E(r) >(π/ 2 )M(r′ ,3/ 2 ) ,其中E(r)和M (r ,t)分别由式 3和式 1定义。本文研究与此对称的E(r)的由Muir平均M(r′ ,t)给出的上界问题 ,证明了使不等式E(r) <(π/ 2 )M (r′,t)对一切r∈ (0 ,1)成立的最佳t值为 (log2 ) /log(π/ 2 ) =1.5 34… ,从而完善了关于E(r)的Muir平均逼近问题的结果。
- 裘松良
- 关键词:完全椭圆积分
- 推进自主创新 提升办学实力被引量:2
- 2006年
- 自主创新能力是国家竞争力的核心。与时俱进.在实践中不断创新,是我们面对未来挑战.实现建设创新型国家这一战略目标的必然选择。高校人才密集,作为科技文化创新的重要机构。是国家自主创新体系的基础和有生力量。以国家目标为己任,坚持走自主创新道路,应是高校积极探索并不断强化的理念。浙江理工大学作为一所以工为主,理、工、文、经、管、法等多学科协调发展的省属重点大学,办学特色明显,优势突出。
- 费君清裘松良
- 关键词:自主创新能力办学实力自主创新体系文化创新
- 奇异值、拟共形映射和Schottky上界被引量:9
- 1998年
- 获得了Ramanujan模方程奇异值的若干性质 (包括渐近精确的界 ) ,并由此得出了Hersch Pflugerφ 偏差函数和Agardη 偏差函数的无穷乘积表示 ,改进了显式拟共形Schwarz引理 ,获得了Schottky上界新型的渐近精确的估计 。
- 裘松良
- 关键词:奇异值拟共形映射SCHOTTKY定理特殊函数