To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
利用光学显微镜(OM),DSC和XRD,研究了直径19 mm Ni47Ti44Nb9热轧棒材再结晶对相变和织构的影响,为该合金棒的实际应用提供理论依据。结果表明:热轧棒从450℃开始发生明显再结晶;从850℃/90 min真空退火棒材的中心到边缘,再结晶晶粒尺寸减小,Ms降低,马氏体转变区间变窄,热滞增大;热轧棒中形成了较强的γ丝织构,600℃/90 min退火后,γ丝织构强度稍有下降,退火温度升到850℃,丝织构明显减弱,等密度线发生漫散,形成了新的织构组分,这有利于改善棒材径向方向的恢复应变。